42,567 research outputs found
Knowledge development for organic systems: An example of weed management
Despite the large amount information on weed biology and specific weed control measures produced by researchers, organic farmers still prioritise weeds as an important area for further research. A recent project investigating weed management in organic farming systems has established that knowledge and learning are key requirements for this to be effective. Development of relevant, practically useful knowledge depends on access to information generated ‘scientifically’ by researchers and also to knowledge generated as a result of farmer experience with weeds. This requires that farmers, advisors and researchers take a participatory approach to collecting and processing information on weed management, using it to develop new and relevant knowledge. The appropriate framework for knowledge development is thus a collegiate one in which all stakeholders’ value and learn from the observations and experience of others. These findings have implications for the way in which research is conducted and funded
Determining the Nature of Late Gunn-Peterson Troughs with Galaxy Surveys
Recent observations have discovered long (up to ~110 Mpc/h), opaque
Gunn-Peterson troughs in the z ~ 5.5 Lyman-alpha forest, which are challenging
to explain with conventional models of the post-reionization intergalactic
medium. Here we demonstrate that observations of the galaxy populations in the
vicinity of the deepest troughs can distinguish two competing models for these
features: deep voids where the ionizing background is weak due to fluctuations
in the mean free path of ionizing photons would show a deficit of galaxies,
while residual temperature variations from extended, inhomogeneous reionization
would show an overdensity of galaxies. We use large (~550 Mpc/h) semi-numerical
simulations of these competing explanations to predict the galaxy populations
in the largest of the known troughs at z ~ 5.7. We quantify the strong
correlation of Lyman-alpha effective optical depth and galaxy surface density
in both models and estimate the degree to which realistic surveys can measure
such a correlation. While a spectroscopic galaxy survey is ideal, we also show
that a relatively inexpensive narrowband survey of Lyman-alpha-emitting
galaxies is ~90% likely to distinguish between the competing models.Comment: 12 pages, 16 figures. Submitted to Ap
Advances in mass-loss predictions
We present the results of Monte Carlo mass-loss predictions for massive stars
covering a wide range of stellar parameters. We critically test our predictions
against a range of observed mass-loss rates -- in light of the recent
discussions on wind clumping. We also present a model to compute the
clumping-induced polarimetric variability of hot stars and we compare this with
observations of Luminous Blue Variables, for which polarimetric variability is
larger than for O and Wolf-Rayet stars. Luminous Blue Variables comprise an
ideal testbed for studies of wind clumping and wind geometry, as well as for
wind strength calculations, and we propose they may be direct supernova
progenitors.Comment: 3 pages, 3 figures, to appear in the proceedings of workshop
'Clumping in Hot Star Winds', eds. W.-R. Hamann, A. Feldmeier, & L. Oskinov
Three-dimensional vortex dynamics in Bose-Einstein condensates
We simulate in the mean-field limit the effects of rotationally stirring a
three-dimensional trapped Bose-Einstein condensate with a Gaussian laser beam.
A single vortex cycling regime is found for a range of trap geometries, and is
well described as coherent cycling between the ground and the first excited
vortex states. The critical angular speed of stirring for vortex formation is
quantitatively predicted by a simple model. We report preliminary results for
the collisions of vortex lines, in which sections may be exchanged.Comment: 4 pages, 4 figures, REVTeX 3.1; Submitted to Physical Review A (6
March 2000
Information-theoretic significance of the Wigner distribution
A coarse grained Wigner distribution p_{W}(x,u) obeying positivity derives
out of information-theoretic considerations. Let p(x,u) be the unknown joint
PDF (probability density function) on position- and momentum fluctuations x,u
for a pure state particle. Suppose that the phase part Psi(x,z) of its Fourier
transform F.T.[p(x,u)]=|Z(x,z)|exp[iPsi(x,z)] is constructed as a hologram.
(Such a hologram is often used in heterodyne interferometry.) Consider a
particle randomly illuminating this phase hologram. Let its two position
coordinates be measured. Require that the measurements contain an extreme
amount of Fisher information about true position, through variation of the
phase function Psi(x,z). The extremum solution gives an output PDF p(x,u) that
is the convolution of the Wigner p_{W}(x,u) with an instrument function
defining uncertainty in either position x or momentum u. The convolution arises
naturally out of the approach, and is one-dimensional, in comparison with the
two-dimensional convolutions usually proposed for coarse graining purposes. The
output obeys positivity, as required of a PDF, if the one-dimensional
instrument function is sufficiently wide. The result holds for a large class of
systems: those whose amplitudes a(x) are the same at their boundaries
(Examples: states a(x) with positive parity; with periodic boundary conditions;
free particle trapped in a box).Comment: pdf version has 16 pages. No figures. Accepted for publ. in PR
Heat Kernel Bounds for the Laplacian on Metric Graphs of Polygonal Tilings
We obtain an upper heat kernel bound for the Laplacian on metric graphs
arising as one skeletons of certain polygonal tilings of the plane, which
reflects the one dimensional as well as the two dimensional nature of these
graphs.Comment: 8 page
Near-infrared integral field spectroscopy of Massive Young Stellar Objects
We present medium resolution () -band integral field
spectroscopy of six MYSOs. The targets are selected from the RMS survey, and we
used the NIFS on the Gemini North telescope. The data show various spectral
line features including Br, CO, H, and \mbox{He\,{\sc i}}. The
Br line is detected in emission in all objects with
-- 200 kms. V645 Cyg shows a high-velocity
P-Cygni profile between -800 kms and -300 kms. We performed
three-dimensional spectroastrometry to diagnose the circumstellar environment
in the vicinity of the central stars using the Br line. We measured the
centroids of the velocity components with sub-mas precision. The centroids
allow us to discriminate the blueshifted and redshifted components in a roughly
east--west direction in both IRAS 18151--1208 and S106 in Br. This lies
almost perpendicular to observed larger scale outflows. We conclude, given the
widths of the lines and the orientation of the spectroastrometric signature,
that our results trace a disc wind in both IRAS 18151--1208 and S106. The CO
absorption lines at low transitions are detected in IRAS
18151--1208 and AFGL 2136. We analysed the velocity structure of the neutral
gas discs. In IRAS 18151--1208, the absorption centroids of the blueshifted and
redshifted components are separated in a direction of north-east to south-west,
nearly perpendicular to that of the larger scale jet. The
position-velocity relations of these objects can be reproduced with central
masses of 30 M_{\sun} for IRAS 18151--1208 and 20 M_{\sun} for AFGL 2136.
We also detect CO bandhead emission in IRAS 18151--1208, S106 and
V645 Cyg. The results can be fitted reasonably with a Keplerian rotation model,
with masses of 15, 20 and 20 M_{\sun} respectively.Comment: 17 pages, 10 figures, accepted by MNRA
The Energy-Momentum Tensor in Fulling-Rindler Vacuum
The energy density in Fulling-Rindler vacuum, which is known to be negative
"everywhere" is shown to be positive and singular on the horizons in such a
fashion as to guarantee the positivity of the total energy. The mechanism of
compensation is displayed in detail.Comment: 9 pages, ULB-TH-15/9
- …