323 research outputs found

    On the reheating stage after inflation

    Full text link
    We point out that inflaton decay products acquire plasma masses during the reheating phase following inflation. The plasma masses may render inflaton decay kinematicaly forbidden, causing the temperature to remain frozen for a period at a plateau value. We show that the final reheating temperature may be uniquely determined by the inflaton mass, and may not depend on its coupling. Our findings have important implications for the thermal production of dangerous relics during reheating (e.g., gravitinos), for extracting bounds on particle physics models of inflation from Cosmic Microwave Background anisotropy data, for the production of massive dark matter candidates during reheating, and for models of baryogenesis or leptogensis where massive particles are produced during reheating.Comment: 8 pages, 2 figures. Submitted for publication in Phys. Rev.

    A Detailed Analysis of One-loop Neutrino Masses from the Generic Supersymmetric Standard Model

    Full text link
    In the generic supersymmetric standard model which had no global symmetry enforced by hand, lepton number violation is a natural consequence. Supersymmetry, hence, can be considered the source of experimentally demanded beyond standard model properties for the neutrinos. With an efficient formulation of the model, we perform a comprehensive detailed analysis of all one-loop contributions to neutrino masses.Comment: 27 pages Revtex, no figur

    Non-thermal leptogenesis with almost degenerate superheavy neutrinos

    Get PDF
    We present a model with minimal assumptions for non-thermal leptogenesis with almost degenerate superheavy right-handed neutrinos in a supersymmetric set up. In this scenario a gauge singlet inflaton is directly coupled to the right-handed (s)neutrinos with a mass heavier than the inflaton mass. This helps avoiding potential problems which can naturally arise otherwise. The inflaton decay to the Standard Model leptons and Higgs, via off-shell right-handed (s)neutrinos, reheats the Universe. The same channel is also responsible for generating the lepton asymmetry, thus requiring no stage of preheating in order to excite superheavy (s)neutrinos. The suppressed decay rate of the inflaton naturally leads to a sufficiently low reheat temperature, which in addition, prevents any wash out of the yielded asymmetry. We will particularly elaborate on important differences from leptogenesis with on-shell (s)neutrinos. It is shown that for nearly degenerate neutrinos a successful leptogenesis can be accommodated for a variety of inflationary models with a rather wide ranging inflationary scale.Comment: 10 revtex pages, 2 figure (uses axodraw). The derivation of the asymmetry parameter for the general case and one figure added. Final version to appear in Phys. Rev.

    Bose Einstein condensation at reheating

    Get PDF
    We discuss the possibility that a perturbative reheating stage after inflation produces a scalar particle gas in a Bose condensate state, emphasizing the possible cosmological role of this phenomenon for symmetry restoration.Comment: 4 pages, 4 figures. Revised version, with an improved analysis of the condensate formatio

    Phosphorus fluxes to the environment from mains water leakage:Seasonality and future scenarios

    Get PDF
    Accurate quantification of sources of phosphorus (P) entering the environment is essential for the management of aquatic ecosystems. P fluxes from mains water leakage (MWL-P) have recently been identified as a potentially significant source of P in urbanised catchments. However, both the temporal dynamics of this flux and the potential future significance relative to P fluxes from wastewater treatment works (WWT-P) remain poorly constrained. Using the River Thames catchment in England as an exemplar, we present the first quantification of both the seasonal dynamics of current MWL-P fluxes and future flux scenarios to 2040, relative to WWT-P loads and to P loads exported from the catchment. The magnitude of the MWL-P flux shows a strong seasonal signal, with pipe burst and leakage events resulting in peak P fluxes in winter (December, January, February) that are >150% of fluxes in either spring (March, April, May) or autumn (September, October, November). We estimate that MWL-P is equivalent to up to 20% of WWT-P during peak leakage events. Winter rainfall events control temporal variation in both WWT-P and riverine P fluxes which consequently masks any signal in riverine P fluxes associated with MWL-P. The annual average ratio of MWL-P flux to WWT-P flux is predicted to increase from 15 to 38% between 2015 and 2040, associated with large increases in P removal at wastewater treatment works by 2040 relative to modest reductions in mains water leakage. However, further research is required to understand the fate of MWL-P in the environment. Future P research and management programmes should more fully consider MWL-P and its seasonal dynamics, alongside the likely impacts of this source of P on water quality

    Leptogenesis and rescattering in supersymmetric models

    Get PDF
    The observed baryon asymmetry of the Universe can be due to the BLB-L violating decay of heavy right handed (s)neutrinos. The amount of the asymmetry depends crucially on their number density. If the (s)neutrinos are generated thermally, in supersymmetric models there is limited parameter space leading to enough baryons. For this reason, several alternative mechanisms have been proposed. We discuss the nonperturbative production of sneutrino quanta by a direct coupling to the inflaton. This production dominates over the corresponding creation of neutrinos, and it can easily (i.e. even for a rather small inflaton-sneutrino coupling) lead to a sufficient baryon asymmetry. We then study the amplification of MSSM degrees of freedom, via their coupling to the sneutrinos, during the rescattering phase which follows the nonperturbative production. This process, which mainly influences the (MSSM) DD-flat directions, is very efficient as long as the sneutrinos quanta are in the relativistic regime. The rapid amplification of the light degrees of freedom may potentially lead to a gravitino problem. We estimate the gravitino production by means of a perturbative calculation, discussing the regime in which we expect it to be reliable.Comment: (20 pages, 6 figures), references added, typos corrected. Final version in revte

    Sleptogenesis

    Get PDF
    We propose that the observed baryon asymmetry of the Universe can naturally arise from a net asymmetry generated in the sleptonic sector at fairly low reheat temperatures. The best candidate is indeed the right-handed sneutrino. The initial asymmetry in the sneutrino sector can be produced from the decay of the inflaton, and is subsequently transferred into the Standard Model (s)lepton doublet via the decay of the sneutrino. The active sphalerons then reprocess the leptonic asymmetry into the baryonic asymmetry. The marked feature of this scenario is that the lepton asymmetry is decoupled from the neutrino Yukawa sector. We exhibit that our scenario can be embedded within models which seek the origin of a tiny mass for neutrinos.Comment: 7 revtex pages, 2 figures (uses axodraw). Minor changes for better clarification and updated references. Final version to appear in Phys. Rev.

    Supersymmetry without R-parity : Constraints from Leptonic Phenomenology

    Full text link
    R-parity conservation is an {\it ad hoc} assumption in the most popular version of the supersymmetric standard model. Most studies of models which do allow for R-parity violation have been restricted to various limiting scenarios. The single-VEV parametrization used in this paper provides a workable framework to analyze phenomenology of the most general theory of SUSY without R-parity. We perform a comprehensive study of leptonic phenomenology at tree-level. Experimental constraints on various processes are studied individually and then combined to yield regions of admissible parameter space. In particular, we show that large R-parity violating bilinear couplings are not ruled out, especially for large tanβ\tan\beta.Comment: 56 pages Revtex with figures incorporated; typos (including transcription typo in Table II) and minor corrections; proof-read version, to appear in Phys. Rev.

    Leptogenesis from a sneutrino condensate revisited

    Full text link
    We re--examine leptogenesis from a right--handed sneutrino condensate, paying special attention to the BB-term associated with the see--saw Majorana mass. This term generates a lepton asymmetry in the condensate whose time average vanishes. However, a net asymmetry will result if the sneutrino lifetime is not much longer than the period of oscillations. Supersymmetry breaking by thermal effects then yields a lepton asymmetry in the standard model sector after the condensate decays. We explore different possibilities by taking account of both the low--energy and Hubble BB-terms. It will be shown that the desired baryon asymmetry of the Universe can be obtained for a wide range of Majorana mass.Comment: 17 revtex pages, 3 figures, 1 table. Slightly modified and references added. Final version accepted for publication in Phys. Rev.
    corecore