2,099 research outputs found
The Leeway of Shipping Containers at Different Immersion Levels
The leeway of 20-foot containers in typical distress conditions is
established through field experiments in a Norwegian fjord and in open-ocean
conditions off the coast of France with wind speed ranging from calm to 14 m/s.
The experimental setup is described in detail and certain recommendations given
for experiments on objects of this size. The results are compared with the
leeway of a scaled-down container before the full set of measured leeway
characteristics are compared with a semi-analytical model of immersed
containers. Our results are broadly consistent with the semi-analytical model,
but the model is found to be sensitive to choice of drag coefficient and makes
no estimate of the cross-wind leeway of containers. We extend the results from
the semi-analytical immersion model by extrapolating the observed leeway
divergence and estimates of the experimental uncertainty to various realistic
immersion levels. The sensitivity of these leeway estimates at different
immersion levels are tested using a stochastic trajectory model. Search areas
are found to be sensitive to the exact immersion levels, the choice of drag
coefficient and somewhat less sensitive to the inclusion of leeway divergence.
We further compare the search areas thus found with a range of trajectories
estimated using the semi-analytical model with only perturbations to the
immersion level. We find that the search areas calculated without estimates of
crosswind leeway and its uncertainty will grossly underestimate the rate of
expansion of the search areas. We recommend that stochastic trajectory models
of container drift should account for these uncertainties by generating search
areas for different immersion levels and with the uncertainties in crosswind
and downwind leeway reported from our field experiments.Comment: 25 pages, 11 figures and 5 tables; Ocean Dynamics, Special Issue on
Advances in Search and Rescue at Sea (2012
Eta Carinae -- Physics of the Inner Ejecta
Eta Carinae's inner ejecta are dominated observationally by the bright
Weigelt blobs and their famously rich spectra of nebular emission and
absorption lines. They are dense (n_e ~ 10^7 to 10^8 cm^-3), warm (T_e ~ 6000
to 7000 K) and slow moving (~40 km/s) condensations of mostly neutral (H^0)
gas. Located within 1000 AU of the central star, they contain heavily
CNO-processed material that was ejected from the star about a century ago.
Outside the blobs, the inner ejecta include absorption-line clouds with similar
conditions, plus emission-line gas that has generally lower densities and a
wider range of speeds (reaching a few hundred km/s) compared to the blobs. The
blobs appear to contain a negligible amount of dust and have a nearly dust-free
view of the central source, but our view across the inner ejecta is severely
affected by uncertain amounts of dust having a patchy distribution in the
foreground. Emission lines from the inner ejecta are powered by photoionization
and fluorescent processes. The variable nature of this emission, occurring in a
5.54 yr event cycle, requires specific changes to the incident flux that hold
important clues to the nature of the central object.Comment: This is Chapter 5 in a book entitled: Eta Carinae and the Supernova
Impostors, Kris Davidson and Roberta M. Humphreys, editors Springe
Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles
We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers.European Research Council (Grant ID: 279405), Science and Technology Facilities Council (Central Laser Facility, Grant ID: LSF1207), Engineering and Physical Sciences Research Council (Grant ID: EP/I003983/1), Natural Environmental Research Council (Grant ID: NE/J500070/1
Minimal Flavour Violation for Leptoquarks
Scalar leptoquarks, with baryon and lepton number conserving interactions,
could have TeV scale masses, and be produced at colliders or contribute to a
wide variety of rare decays. In pursuit of some insight as to the most
sensitive search channels, We assume that the leptoquark-lepton-quark coupling
can be constructed from the known mass matrices. We estimate the rates for
selected rare processes in three cases: leptoquarks carrying lepton and quark
flavour, leptoquarks with quark flavour only, and unflavoured leptoquarks. We
find that leptoquark decay to top quarks is an interesting search channel.Comment: 17 pages, 2 figures, minor changes and references adde
Neural correlates of enhanced visual short-term memory for angry faces: An fMRI study
Copyright: © 2008 Jackson et al.Background: Fluid and effective social communication requires that both face identity and emotional expression information are encoded and maintained in visual short-term memory (VSTM) to enable a coherent, ongoing picture of the world and its players. This appears to be of particular evolutionary importance when confronted with potentially threatening displays of emotion - previous research has shown better VSTM for angry versus happy or neutral face identities.Methodology/Principal Findings: Using functional magnetic resonance imaging, here we investigated the neural correlates of this angry face benefit in VSTM. Participants were shown between one and four to-be-remembered angry, happy, or neutral faces, and after a short retention delay they stated whether a single probe face had been present or not in the previous display. All faces in any one display expressed the same emotion, and the task required memory for face identity. We find enhanced VSTM for angry face identities and describe the right hemisphere brain network underpinning this effect, which involves the globus pallidus, superior temporal sulcus, and frontal lobe. Increased activity in the globus pallidus was significantly correlated with the angry benefit in VSTM. Areas modulated by emotion were distinct from those modulated by memory load.Conclusions/Significance: Our results provide evidence for a key role of the basal ganglia as an interface between emotion and cognition, supported by a frontal, temporal, and occipital network.The authors were supported by a Wellcome Trust grant (grant number 077185/Z/05/Z) and by BBSRC (UK) grant BBS/B/16178
Non-universal minimal Z' models: present bounds and early LHC reach
We consider non-universal 'minimal' Z' models, whose additional U(1) charge
is a non-anomalous linear combination of the weak hypercharge Y, the baryon
number B and the partial lepton numbers (L_e, L_mu, L_tau), with no exotic
fermions beyond three standard families with right-handed neutrinos. We show
that the observed pattern of neutrino masses and mixing can be fully reproduced
by a gauge-invariant renormalizable Lagrangian, and flavor-changing neutral
currents in the charged lepton sector are suppressed by a GIM mechanism. We
then discuss the phenomenology of some benchmark models. The electrophilic
B-3L_e model is significantly constrained by electroweak precision tests, but
still allows to fit the hint of an excess observed by CDF in dielectrons but
not in dimuons. The muonphilic B-3L_mu model is very mildly constrained by
electroweak precision tests, so that even the very early phase of the LHC can
explore significant areas of parameter space. We also discuss the hadrophobic
L_mu-L_tau model, which has recently attracted interest in connection with some
puzzling features of cosmic ray spectra.Comment: 29 pages, 13 figure
Flavoured soft leptogenesis and natural values of the B term
We revisit flavour effects in soft leptogenesis relaxing the assumption of
universality for the soft supersymmetry breaking terms. We find that with
respect to the case in which the heavy sneutrinos decay with equal rates and
equal CP asymmetries for all lepton flavours, hierarchical flavour
configurations can enhance the efficiency by more than two orders of magnitude.
This translates in more than three order of magnitude with respect to the
one-flavour approximation. We verify that lepton flavour equilibration effects
related to off-diagonal soft slepton masses are ineffective for damping these
large enhancements. We show that soft leptogenesis can be successful for
unusual values of the relevant parameters, allowing for and for values of the washout parameter up to .Comment: 23 pages, 5 figures postscript, Minor changes to match the published
version in JHE
Implications of Flavor Dynamics for Fermion Triplet Leptogenesis
We analyze the importance of flavor effects in models in which leptogenesis
proceeds via the decay of Majorana electroweak triplets. We find that depending
on the relative strengths of gauge and Yukawa reactions the asymmetry can
be sizably enhanced, exceeding in some cases an order of magnitude level. We
also discuss the impact that such effects can have for TeV-scale triplets
showing that as long as the asymmetry is produced by the dynamics of the
lightest such triplet they are negligible, but open the possibility for
scenarios in which the asymmetry is generated above the TeV scale by heavier
states, possibly surviving the TeV triplet related washouts. We investigate
these cases and show how they can be disentangled at the LHC by using Majorana
triplet collider observables and, in the case of minimal type III see-saw
models even through lepton flavor violation observables.Comment: 22 pages, 9 figures, extended discussion on collider phenomenology,
references added. Version matches publication in JHE
- …