21,088 research outputs found

    Analysis of the Low-Energy Theorem for \gamma p \to p \pi^0

    Full text link
    The derivation of the `classical' low-energy theorem (LET) for \gamma p \rightarrow p\pi^0 is re-examined and compared to chiral perturbation theory. Both results are correct and are not contradictory; they differ because different expansions of the same quantity are involved. Possible modifications of the extended partially conserved axial-vector current relation, one of the starting points in the derivation of the LET, are discussed. An alternate, more transparent form of the LET is presented.Comment: 5 pages, Revtex, no figures, no table

    Low Molecular Weight mRNA Encodes a Protein That Controls Serotonin 5-HT_(1c) and Acetylcholine M_1 Receptor Sensitivity in Xenopus Oocytes

    Get PDF
    Serotonin 5-HT_(1c) and acetylcholine M_1 receptors activate phosphoinositidase, resulting in an increased formation of IP_3 and 1,2 diacylglycerol. In Xenopus oocytes injected with mRNA encoding either of these receptors, Ca^(2+) released from intracellular stores in response to IP3 then opens Ca^(2+)-gated Cl^-channels. In the present experiments, oocytes expressing a transcript from a cloned mouse serotonin 5-HT_(1c) receptor were exposed to identical 15-s pulses of agonist, administered 2 min apart; the second current response was two to three times that of the first. However, in those oocytes coinjected with the 5-HT_(1c) receptor transcript and a low molecular weight fraction (0.3-1.5 kb) of rat brain mRNA, the second current response was ~50% of the first. Thus, the low molecular weight RNA encodes a protein (or proteins) that causes desensitization. Experiments using fura-2 or a Ca^(2+)-free superfusate indicated that desensitization of the 5-HT_(1c) receptor response does not result from a sustained elevation of intracellular Ca^(2+) level or require the entry of extracellular Ca^(2+). Photolysis of caged IP_3 demonstrated that an increase in IP_3 and a subsequent rise in Ca^(2+) do not produce desensitization of either the IP_3 or 5-HT_(1c) peak current responses. Furthermore, in oocytes coinjected with the low molecular weight RNA and a transcript from the rat M_1 acetylcholine receptor, the M_1 current response was greatly attenuated. Our data suggest that the proteins involved in attenuation of the M_1 current response and desensitization of the 5-HT_(1c) current response may be the same

    A simple model to estimate atmospheric concentrations of aerosol chemical species based on snow core chemistry at Summit, Greenland

    Get PDF
    A simple model is presented to estimate atmospheric concentrations of chemical species that exist primarily as aerosols based on snow core/ice core chemistry at Summit, Greenland. The model considers the processes of snow, fog, and dry deposition. The deposition parameters for each of the processes are estimated for SO42− and Ca2+ and are based on experiments conducted during the 1993 and 1994 summer field seasons. The seasonal mean atmospheric concentrations are estimated based on the deposition parameters and snow cores obtained during the field seasons. The ratios of the estimated seasonal mean airborne concentration divided by the measured mean concentration ( ) for SO42− over the 1993 and 1994 field seasons are 0.85 and 0.95, respectively. The ratios for Ca2+ are 0.45 and 0.90 for the 1993 and 1994 field seasons. The uncertainties in the estimated atmospheric concentrations range from 30% to 40% and are due to variability in the input parameters. The model estimates the seasonal mean atmospheric SO42− and Ca2+ concentrations to within 15% and 55%, respectively. Although the model is not directly applied to ice cores, the application of the model to ice core chemical signals is briefly discussed

    Modeling of the processing and removal of trace gas and aerosol species by Arctic radiation fogs and comparison with measurements

    Get PDF
    A Lagrangian radiation fog model is applied to a fog event at Summit, Greenland. The model simulates the formation and dissipation of fog. Included in the model are detailed gas and aqueous phase chemistry, and deposition of chemical species with fog droplets. Model predictions of the gas phase concentrations of H2O2, HCOOH, SO2, and HNO3 as well as the fog fluxes of S(VI), N(V), H2O2, and water are compared with measurements. The predicted fluxes of S(VI), N(V), H2O2, and fog water generally agree with measured values. Model results show that heterogeneous SO2 oxidation contributes to approximately 40% of the flux of S(VI) for the modeled fog event, with the other 60% coming from preexisting sulfate aerosol. The deposition of N(V) with fog includes contributions from HNO3 and NO2 initially present in the air mass. HNO3 directly partitions into the aqueous phase to create N(V), and NO2 forms N(V) through reaction with OH and the nighttime chemistry set of reactions which involves N2O5 and water vapor. PAN contributes to N(V) by gas phase decomposition to NO2, and also by direct aqueous phase decomposition. The quantitative contributions from each path are uncertain since direct measurements of PAN and NO2 are not available for the fog event. The relative contributions are discussed based on realistic ranges of atmospheric concentrations. Model results suggest that in addition to the aqueous phase partitioning of the initial HNO3 present in the air mass, the gas phase decomposition of PAN and subsequent reactions of NO2 with OH as well as nighttime nitrate chemistry may play significant roles in depositing N(V) with fog. If a quasi-liquid layer exists on snow crystals, it is possible that the reactions taking place in fog droplets also occur to some extent in clouds as well as at the snow surface

    Unitary ambiguity in the extraction of the E2/M1 ratio for the γN↔Δ\gamma N\leftrightarrow\Delta transition

    Full text link
    The resonant electric quadrupole amplitude in the transition γN↔Δ(1232)\gamma N\leftrightarrow\Delta(1232) is of great interest for the understanding of baryon structure. Various dynamical models have been developed to extract it from the corresponding photoproduction multipole of pions on nucleons. It is shown that once such a model is specified, a whole class of unitarily equivalent models can be constructed, all of them providing exactly the same fit to the experimental data. However, they may predict quite different resonant amplitudes. Therefore, the extraction of the E2/M1(γN↔Δ\gamma N\leftrightarrow\Delta) ratio (bare or dressed) which is based on a dynamical model using a largely phenomenological πN\pi N interaction is not unique.Comment: 10 pages revtex including 4 postscript figure

    Long-range interactions and the sign of natural amplitudes in two-electron systems

    Full text link
    In singlet two-electron systems the natural occupation numbers of the one-particle reduced density matrix are given as squares of the natural amplitudes which are defined as the expansion coefficients of the two-electron wave function in a natural orbital basis. In this work we relate the sign of the natural amplitudes to the nature of the two-body interaction. We show that long-range Coulomb-type interactions are responsible for the appearance of positive amplitudes and give both analytical and numerical examples that illustrate how the long-distance structure of the wave function affects these amplitudes. We further demonstrate that the amplitudes show an avoided crossing behavior as function of a parameter in the Hamiltonian and use this feature to show that these amplitudes never become zero, except for special interactions in which infinitely many of them can become zero simultaneously when changing the interaction strength. This mechanism of avoided crossings provides an alternative argument for the non-vanishing of the natural occupation numbers in Coulomb systems.Comment: 10 pages, 4 figure
    • …
    corecore