194 research outputs found

    Elastic building blocks for confined sheets

    Get PDF
    We study the behavior of thin elastic sheets that are bent and strained under the influence of weak, smooth confinement. We show that the emerging shapes exhibit the coexistence of two types of domains that differ in their characteristic stress distributions and energies, and reflect different constraints. A focused-stress patch is subject to a geometric, piecewise-inextensibility constraint, whereas a diffuse-stress region is characterized by a mechanical constraint - the dominance of a single component of the stress tensor. We discuss the implications of our findings for the analysis of elastic sheets that are subject to various types of forcing

    Fractal to Nonfractal Phase Transition in the Dielectric Breakdown Model

    Full text link
    A fast method is presented for simulating the dielectric-breakdown model using iterated conformal mappings. Numerical results for the dimension and for corrections to scaling are in good agreement with the recent RG prediction of an upper critical ηc=4\eta_c=4, at which a transition occurs between branching fractal clusters and one-dimensional nonfractal clusters.Comment: 5 pages, 7 figures; corrections to scaling include

    A prototypical model for tensional wrinkling in thin sheets

    Get PDF
    The buckling and wrinkling of thin films has recently seen a surge of interest among physicists, biologists, mathematicians and engineers. This has been triggered by the growing interest in developing technologies at ever decreasing scales and the resulting necessity to control the mechanics of tiny structures, as well as by the realization that morphogenetic processes, such as the tissue-shaping instabilities occurring in animal epithelia or plant leaves, often emerge from mechanical instabilities of cell sheets. While the most basic buckling instability of uniaxially compressed plates was understood by Euler more than 200 years ago, recent experiments on nanometrically thin (ultrathin) films have shown significant deviations from predictions of standard buckling theory. Motivated by this puzzle, we introduce here a theoretical model that allows for a systematic analysis of wrinkling in sheets far from their instability threshold. We focus on the simplest extension of Euler buckling that exhibits wrinkles of finite length - a sheet under axisymmetric tensile loads. This geometry, whose first study is attributed to LamÂŽe, allows us to construct\ud a phase diagram that demonstrates the dramatic variation of wrinkling patterns from near-threshold to far-from-threshold conditions. Theoretical arguments and comparison to experiments show that for thin sheets the far-from-threshold regime is expected to emerge under extremely small compressive loads, emphasizing the relevance of our analysis for nanomechanics applications

    Capillary deformations of bendable films

    Get PDF
    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical theory for the contact of liquid drops on solids. Our calculations and experiments show that the liquid-solid-vapor contact angle is modified from the Young angle, even though the elastic bulk modulus (E) of the sheet is so large that the ratio between the surface tension γ and E is of molecular size. This finding establishes a new type of “soft capillarity” that stems from the bendability of thin elastic bodies rather than from material softness. We also show that the size of the wrinkle pattern that emerges in the sheet is fully predictable, thus resolving a puzzle noticed in several previous attempts to model “drop-on-a-floating-sheet” experiments, and enabling a reliable usage of this setup for the metrology of ultrathin films

    A smooth cascade of wrinkles at the edge of a floating elastic film

    Get PDF
    The mechanism by which a patterned state accommodates the breaking of translational symmetry by a phase boundary or a sample wall has been addressed in the context of Landau branching in type-I superconductors, refinement of magnetic domains, and compressed elastic sheets. We explore this issue by studying an ultrathin polymer sheet floating on the surface of a fluid, decorated with a pattern of parallel wrinkles. At the edge of the sheet, this corrugated profile meets the fluid meniscus. Rather than branching of wrinkles into generations of ever-smaller sharp folds, we discover a smooth cascade in which the coarse pattern in the bulk is matched to fine structure at the edge by the continuous introduction of discrete, higher wavenumber Fourier modes. The observed multiscale morphology is controlled by a dimensionless parameter that quantifies the relative strength of the edge forces and the rigidity of the bulk pattern.Comment: 4 pages, 4 figure

    Diffusion limited aggregation as a Markovian process: site-sticking conditions

    Full text link
    Cylindrical lattice diffusion limited aggregation (DLA), with a narrow width N, is solved for site-sticking conditions using a Markovian matrix method (which was previously developed for the bond-sticking case). This matrix contains the probabilities that the front moves from one configuration to another at each growth step, calculated exactly by solving the Laplace equation and using the proper normalization. The method is applied for a series of approximations, which include only a finite number of rows near the front. The fractal dimensionality of the aggregate is extrapolated to a value near 1.68.Comment: 27 Revtex pages, 16 figure

    Statistical Physics of Fracture Surfaces Morphology

    Full text link
    Experiments on fracture surface morphologies offer increasing amounts of data that can be analyzed using methods of statistical physics. One finds scaling exponents associated with correlation and structure functions, indicating a rich phenomenology of anomalous scaling. We argue that traditional models of fracture fail to reproduce this rich phenomenology and new ideas and concepts are called for. We present some recent models that introduce the effects of deviations from homogeneous linear elasticity theory on the morphology of fracture surfaces, succeeding to reproduce the multiscaling phenomenology at least in 1+1 dimensions. For surfaces in 2+1 dimensions we introduce novel methods of analysis based on projecting the data on the irreducible representations of the SO(2) symmetry group. It appears that this approach organizes effectively the rich scaling properties. We end up with the proposition of new experiments in which the rotational symmetry is not broken, such that the scaling properties should be particularly simple.Comment: A review paper submitted to J. Stat. Phy

    Log-periodic route to fractal functions

    Full text link
    Log-periodic oscillations have been found to decorate the usual power law behavior found to describe the approach to a critical point, when the continuous scale-invariance symmetry is partially broken into a discrete-scale invariance (DSI) symmetry. We classify the `Weierstrass-type'' solutions of the renormalization group equation F(x)= g(x)+(1/m)F(g x) into two classes characterized by the amplitudes A(n) of the power law series expansion. These two classes are separated by a novel ``critical'' point. Growth processes (DLA), rupture, earthquake and financial crashes seem to be characterized by oscillatory or bounded regular microscopic functions g(x) that lead to a slow power law decay of A(n), giving strong log-periodic amplitudes. In contrast, the regular function g(x) of statistical physics models with ``ferromagnetic''-type interactions at equibrium involves unbound logarithms of polynomials of the control variable that lead to a fast exponential decay of A(n) giving weak log-periodic amplitudes and smoothed observables. These two classes of behavior can be traced back to the existence or abscence of ``antiferromagnetic'' or ``dipolar''-type interactions which, when present, make the Green functions non-monotonous oscillatory and favor spatial modulated patterns.Comment: Latex document of 29 pages + 20 ps figures, addition of a new demonstration of the source of strong log-periodicity and of a justification of the general offered classification, update of reference lis
    • 

    corecore