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Elastic building blocks for confined sheets

Robert D. Schroll,1 Eleni Katifori,2 and Benny Davidovitch1
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2Center for Studies in Physics and Biology, Rockefeller University, New York, NY 10065

(Dated: December 20, 2010)

We study the behavior of thin elastic sheets that are bent and strained under the influence of
weak, smooth confinement. We show that the emerging shapes exhibit the coexistence of two types
of domains that differ in their characteristic stress distributions and energies, and reflect different
constraints. A focused-stress patch is subject to a geometric, piecewise-inextensibility constraint,
whereas a diffuse-stress region is characterized by a mechanical constraint - the dominance of a
single component of the stress tensor. We discuss the implications of our findings for the analysis
of elastic sheets that are subject to various types of forcing.

The geometry and mechanics of elastic sheets have re-
cently become a focus of intense activity for chemists,
biologists, engineers, and physicists [1, 2]. This interest
has been driven in part by studies that demonstrated its
relevance to biological tissues [3, 4], and by technolog-
ical advance that enabled the production of extremely
thin films with precise material properties [5, 6]. Such
thin sheets undergo a buckling instability even under mi-
nor compressions, and their typical state is therefore far
above threshold, where the energetic cost of straining is
much larger than that of bending [2]. In such situations
traditional perturbation methods that are used to ana-
lyze sheets close to buckling threshold [7] are no longer
available, and a full nonlinear analysis of the system is
required. A major theoretical challenge here is the de-
velopment of a formalism that effectively addresses the
configurations realized by elastic sheets as their thick-
ness becomes exceedingly small. A central question for
such a theory is what are the basic “building blocks” that
compose these asymptotic shapes.
Singular types of building blocks include developable

cones (“d-cones”) [8, 9] and “minimal ridges” [10, 11],
which are reflected in the branched network of vertices
and sharp folds in a crumpled paper [2]. In the limit
of an infinitely thin sheet, these asymptote to points or
lines. This behavior manifests a consequence of Gauss’s
Theorem Egregium, according to which patches that are
curved in two directions must be strained [2]. These sin-
gular structures focus elastic energy in small regions that
are highly bent and hence strained, creating an asymptot-
ically piecewise-inextensible (origami-like) shape in which
the rest of the sheet remains unstrained in flat facets.
Stress focusing has been a subject of many studies in
the last two decades [2]. However, it has become clear
that shapes of thin sheets are not fully describable by
the stress focusing idea. For example, it is known that
uniaxial tension leads to smooth wrinkling patterns that
are curved (hence strained) everywhere in both directions
[12, 13]. Even without exerted tension, certain boundary
conditions [14] lead to shapes that reflect a smooth distri-
bution of strain and curvature. It was even proposed that
stress focusing may appear only under large confinement

[15] or in response to sharp boundaries [11], although re-
cent results may suggest that this is not the case [16]. We
are thus led to ask a number of fundamental questions:
What type of boundary conditions yield singular struc-
tures? Are there other fundamental structures that are
necessary for describing the configurations of thin sheets?

Motivated by these questions, we study in this Letter
a sheet under simple confinement, representative of the
general class of boundary conditions that are not “tai-
lored” to yield a piecewise-inextensible shape. Our re-
sults render three important messages: First, we show
that a focused-stress structure appears even under weak,
smooth confinement. Second, a focused-stress zone may
coexist with a large region in which energy is smoothly
distributed. This “diffuse-stress” zone constitutes a new,
so far largely overlooked, building block. Third, in con-
trast to stress focusing, diffuse-stress domains are not
dominated by a geometric constraint but rather by a me-
chanical one: vanishing ratio between compressive and
tensile components of the stress tensor. Our observa-
tions suggest a cornerstone for a theory of the asymptotic
shapes of thin sheets under general conditions.

Our system, Fig. 1a, consists of a semi-infinite rect-
angular sheet of thickness t where one long edge, say
y = W , is displaced inward by ∆̃W with ∆̃ ≪ 1.
Far from the edge at x = 0, a sufficiently thin sheet

(t ≪

√

∆̃W ) would naturally buckle to an asymptoti-
cally x-independent shape ζ1(x, y) = A1 cos(πy/W ). At
x = 0 we impose a “3-buckle” profile ζ3(x = 0, y) =
A3 cos(3πy/W ), required to lie in the y-z plane. Absence
of strain at the boundaries determines the amplitudes:

Aj ≈ 2
√

∆̃W/jπ (j = 1, 3). The transition between the
3-buckle and 1-buckle shapes requires the formation of
a strained region, where curvature exists in both direc-
tions. It is the structure of this strained region that we
address here. Our choice of boundary conditions is moti-
vated by several reasons: (a) The strainless 1-buckle and
3-buckle shapes are, respectively, the asymptotic ground
state and a low-energy meta-stable state of the bending
energy (1) under one-dimensional confinement. Similarly
to the universal nature of phase transformation, e.g. be-

http://arxiv.org/abs/1012.3787v1
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FIG. 1. (a) A semi-infinite sheet of width W confined in one

direction by a distance ∆̃W . The near end of the sheet is
forced into a 3-buckle shape in the y-z plane. (b) The shape

of a sheet with t/W = 0.002, ∆̃ = 0.1, and ν = 1

3
. Note

the extended smooth area near the prescribed edge, which
eventually terminates in a focused structure. (c) When the
prescribed edge is allowed to be non-planar, the sheet has
only a focused stress region. (d) The centerline profiles for
the shapes in (b) (black) and (c) (gray).

tween solid and super-cooled liquid, the transition be-
tween the strainless states can be expected to be a generic
form for accommodating unavoidable strain, rather than
a shape dependent on the specific boundary conditions.
In contrast, other studies directly induce strain by pinch-
ing [14, 17] or flattening [18, 19] an edge of a confined
sheet. (b) Despite the nontrivial structure of the strained
region, the simplicity of our system allows quantitative
description both numerically and analytically. This en-
ables us to clearly distinguish between “diffuse-stress”
and “focused-stress” types of building blocks, and to for-
mulate general asymptotic conditions that could be used
under more complicated constraints. (c) Beyond the gen-
eral lessons drawn from this system, it deserves its own
right as a natural “unit cell” of hierarchical, multi-scale
patterns on elastic sheets [13, 18–21].
The configuration of the sheet is found by minimizing

the Föppl–von Kármán (FvK) elastic energy, U = US +
UB, which contains stretching and bending terms [7]:

US =
1

2

∫

dxdy σijuij ; UB =
1

2
B

∫

dxdy (∇2ζ)2 (1)

σij =
Y

1− ν2
[(1−ν)uij + νδijukk]. (2)

Y = Et and B = Et3/12(1 − ν2) are, respectively, the
stretching and bending modulii, E is the Young modulus,
and ν is the Poisson ratio. The (geometric) nonlinearity
of U is associated with the strain uij =

1

2
(∂iuj + ∂jui +

∂iζ∂jζ). We use the numerical software Surface Evolver
[22] to minimize this energy on a rectangular sheet. One
end of the sheet is fixed to the 3-buckle shape while the

FIG. 2. (a) The density of stretching energy in the diffuse-
stress region of Fig. 1b. The prescribed edge is at the left.
The stretching energy density can be well approximated by
the form A(x) exp[−(y/w(x))2] . (b) When plotted against

x̄ = xτ 1/2/W , the width w(x̄) does not depend on thickness
(t/W as indicated).

other is free. The sheet is long enough that the free end
takes the shape of a single buckle. No bending moment
is applied to the long edges.
A representative shape, shown in Fig. 1b, exhibits

two prominent features. First, the transition terminates
sharply at a small, stress-focusing zone, beyond which the
single buckle shape is approached. Notably, this focused-
stressed structure appears under weak, smooth confine-
ment, unlike the d-cones and ridges of [9–11]. Second,
the transition between the two states occurs over a large
distance Lt, which diverges as t−1/2 as t is reduced. Sim-
ilar scaling was observed in a pinched cylindrical shape
[14, 23], and was shown to arise from a competition be-
tween two dominant energies: excess bending (favoring
small Lt) and stretching (favoring large Lt). A simi-
lar type of energetic balance has been noted already in
[18–20]. The bending energy is dominated by the curva-

ture in the ŷ direction, κ ∼

√

∆̃/W , while the in-plane
stretching is dominated by strain along x̂, estimated as
uxx ∼ ( ∂ζ∂x)

2 ∼ ∆̃(W/Lt)
2. Balancing the two energies

Bκ2 ∼ Y u2

xx, we obtain

Lt ∼ W/τ1/2 and U ∼ EW 3(τ∆̃)5/2 , (3)

where τ ≡ t/
(

W
√

∆̃
)

is an effective (dimensionless)

measure of the thickness. Notice that far from buckling
threshold τ≪1. Notably, this argument suggests that in
the transition region stress is not focused; instead stress
is smoothly distributed over area WLt that diverges as
t→0. Figure 2 demonstrates that the lateral extent w(x)
of the highly stressed region is a finite, thickness inde-
pendent fraction of the width W , while the length scales
with Lt, as seen in the rescaling with x̄ ≡ xτ1/2/W . We
therefore identify this as a diffuse-stress region.
Naively, this observation seems to be inconsistent with

the previously-noted stress focusing apparent near x≈Lt.
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FIG. 3. The diagonal stress components σxx and σyy, mea-
sured along the centerline of the shapes and plotted against
the scaled x̄, for the simulations of Fig. 2b (same legend). The
data collapse when σxx is rescaled by τ (top) and σyy by τ 2

(bottom). Inset, the unscaled stresses, also plotted against x̄.

However, careful examination of this area resolves this
paradox: The diffuse-stress region terminates at x̄∗ ≈

0.32, beyond which a typical focused-stress structure ap-
pears. This structure resembles a d-cone whose charac-
teristic features become sharper as t is reduced, consis-
tently with known scaling laws [9, 17]. In contrast to
the diverging size WLt of the diffuse-stressed region, the
focused-stress structure is confined to an area ∼ W 2.

Our results demonstrate the emergence of a focused-
stress domain in response to smooth strainless bound-
ary conditions, and its coexistence with a large diffuse-
stress region. Evidence for the general occurrence of
such shapes can be obtained by allowing the planar edge
profile to rotate an arbitrary angle θ around the y axis
[ux(x = 0, y) = A3 cos θ cos(3πy/W )]. While this free-
dom does slightly modify the shape, we found no qual-
itative change of the above picture unless the edge was
allowed to assume a nonplanar shape [i.e. an arbitrary
ux(x = 0, y)]. In this case, shown in Fig. 1c, only a
focused-stress structure appears near the edge, giving
way to the single buckle after a distance Lt ∼ W . This
length does not depend on thickness, reflecting the geo-
metrical nature of the inextensibility constraint [24]. The
energy associated with this focused-stress structure is ob-
served to scale with τ8/3 [25], similar to the energy scaling
of minimal ridges [2, 10]. This energy is asymptotically
negligible relative to the diffuse-stress energy, (3). The
“fine-tuning” required to eliminate the diffuse-stress re-

gion suggests that although stress focusing is energeti-
cally favorable, it is generally insufficient to relieve the
strain in a confined sheet. The formation of a diffuse-
stress region seems to be the “second best” alternative
for an unavoidable stretching, and hence we conjecture
that a coexistence of these two building blocks, focused-
stress and diffuse-stress, is a general feature of very thin
sheets under arbitrary confinements.
The markedly different nature of diffused-stress and

focused-stress domains and their coexistence in a single
shape lead one to expect that an analytic computation of
the shapes of confined sheets requires the matching of two
distinct types of asymptotic expansions. The asymptotic
nature of focused-stress structures is known to reflect a
geometric principle [2]: a piecewise-inextensible shape,
with vertices and ridges whose size vanishes as t → 0.
Our next step is then to obtain a second, analogous cri-
terion for the asymptotic description of diffused-stress
structures.
As seen in the estimation of the energies, the diffuse-

stress region is characterized by a diverging aspect ra-
tio: W/Lt → 0 as τ → 0. This feature is associated
with a mechanical constraint on the configuration: a van-
ishing ratio between compressive and tensile stress com-
ponents. This is seen most clearly by considering the
Airy potential χ(x, y) [7]. The scaling behavior leading
to Eq. (3) suggests that in the limit τ ≪ 1 Airy poten-
tials of sheets with various thicknesses satisfy a scaling
solution: χ(x, y) = τ∆̃YW 2 g(x̄, y

W ). The coordinates x
and y appear only in their rescaled forms, so g depends
only on the geometry of the system and boundary con-
ditions. The prefactor is chosen to satisfy the scaling
relations (3). Because of the different scaling of x and y
derivatives, the asymptotic stresses scale as:

σxx ∼ Y ∆̃τ σyy ∼ Y ∆̃τ2 σxy ∼ Y ∆̃τ3/2. (4)

This asymptotic behavior is confirmed in Fig. 3, and
shows that as τ → 0 a single stress component σxx be-
comes dominant. This is unlike the asymptotic behavior
of the strain, where Eqs. (2,4) imply:

uxx ∼ ∆̃τ uyy ∼ −ν∆̃τ uxy ∼ ∆̃τ3/2 , (5)

This leads us to conjecture that a diffuse-stress region is
generally characterized by a vanishing stress ratio:

σyy/σxx → 0 as τ → 0 , (6)

regardless of the Poisson ratio. This mechanical prop-
erty stands in contrast to the geometric, piecewise-
inextensibility constraint that dominates focused-stress
structures. Condition (6) implies that the diffuse-stress
region must terminate where the tensile stress compo-
nent σxx vanishes, as it does for sufficiently large x, in
the single buckle region (whereas σyy remains finite for
any τ due to the confinement). This suggests that the
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FIG. 4. A linear-log plot of the first four odd Fourier modes
of the cross-sections of the shapes for t/W = 0.0005. Except
near the focused structure at x̄∗

≈ 0.32, modes higher than 3
are negligible, indicating that most of the shape is smooth.

focused-stress region appears precisely where condition
(6) can no longer be satisfied.
The vanishing stress ratio throughout the whole

diffuse-stress region provides a basis for an asymptotic
expansion of the shape in the limit τ ≪ 1. The simple
geometry of our system enables us to demonstrate the
basic principle of this expansion, since a natural candi-
date for the asymptotic diffuse-stress shape is obtained
by a decomposition into two leading Fourier modes:

ζ(x̄, y) ≈ f1(x̄) cos(πy/W ) + f3(x̄) cos(3πy/W ) (7)

for 0 < x̄ < x̄∗, where both functions f1(x̄), f3(x̄) remain
finite and higher order modes (e.g. fn(x̄) with n>3) van-
ish as τ→0. Intuitively, f3(x̄) is finite due to the imposed
3-buckle profile at x=0 whereas f1(x̄) must be finite in
the approach to the single buckle shape. The ansatz (7)
is supported by our numerical data, Fig. 4. Obviously,
the simple form (7) does not describe the focused-stress
region. The FvK equations [7] then provide a non-linear
coupling between the shape ζ(x̄, y) and the Airy potential
χ(x̄, y), and imply a similar asymptotic expansion for χ
that exhibits precisely the vanishing stress ratio (6) [26].
Equation (7) results from the simple geometry of Fig. 1,
but we expect that similarly smooth forms, composed
of finite number of suitable basis functions, describe the
shape and stress distribution of diffuse-stress domains in
more complicated geometries. In our case, for τ ≪ 1,
the FvK equations reduce to a set of coupled ordinary
differential equations (ODE) for f1(x̄) and f3(x̄). We
expect this reduction to ODE form to be characteristic
of diffuse-stress domains. A full solution would require
matching of the diffuse-stress shape (7) to the focused-
stress structure at x̄∗. The explicit form of the equations,
as well as the effective matching conditions, will be dis-
cussed elsewhere [25].
We conclude by noting the possible relevance of our

results for non-Euclidean elasticity, which addresses the
shape of sheets whose strainless state corresponds to
some nonflat “target” metric [4, 27]. Such sheets are
naturally bent even in the absence of any external con-

fining forces, and are often assumed to be in a state that
is close to “isometric embedding”, namely a strainless
shape compatible with the target metric. This reasoning
is reminiscent of focused-stress regions, wherein the sheet
becomes strainless nearly everywhere except in ridges and
vertices that become infinitely narrow zones whose area
vanishes asymptotically. However, there may be domains
analogous to the diffuse-stress zones, where the strain
becoming small everywhere in a region whose size is di-
verging. Thus, several distinct expansions would need
to be stitched together to describe the whole sheet. It
remains to be seen whether such a scenario emerges in
non-Euclidean sheets.

In summary, we identified two classes of elastic build-
ing blocks that can be described as focused-stress and
diffuse-stress, and showed how they coexist in elastic
sheets under weak, smooth confinement. These two
classes are distinguished not only by their stress distri-
butions, but also by their distinct characteristic energies
and the different underlying asymptotic constraints: A
geometric constraint (piecewise inextensibility) provides
a theoretical framework for calculating shapes and en-
ergies of focused-stress domains, whereas a mechanical
constraint (Eq. (6)) is a basis for systematic analysis
of diffuse-stress regions. These observations were made
by studying an elementary set-up that lead to coexis-
tence between a single focused-stress domain and a sin-
gle diffuse-stress region that channels stretching along a
direction dictated by the uniaxial confinement. Further
progress will be required to develop these concepts into
a theoretical toolbox that will allow efficient analysis of
thin sheets subject to general types of forcing.
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χ2n(x̄) cos 2nȳ, where the χj can be expressed in

terms of f1 and f3, and B(x̄) and D(x̄) are integration
constants.

[27] E. Efrati, E. Sharon, and R. Kupferman, Phys. Rev. E
80, 016602 (2009).


	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2010

	Elastic building blocks for confined sheets
	R Schroll
	Katifori
	B Davidovitch
	Recommended Citation


	tmp.1297370074.pdf.clEOs

