5 research outputs found

    Quantitative Structure–Activity Relationship Models for Ready Biodegradability of Chemicals

    No full text
    The European REACH regulation requires information on ready biodegradation, which is a screening test to assess the biodegradability of chemicals. At the same time REACH encourages the use of alternatives to animal testing which includes predictions from quantitative structure–activity relationship (QSAR) models. The aim of this study was to build QSAR models to predict ready biodegradation of chemicals by using different modeling methods and types of molecular descriptors. Particular attention was given to data screening and validation procedures in order to build predictive models. Experimental values of 1055 chemicals were collected from the webpage of the National Institute of Technology and Evaluation of Japan (NITE): 837 and 218 molecules were used for calibration and testing purposes, respectively. In addition, models were further evaluated using an external validation set consisting of 670 molecules. Classification models were produced in order to discriminate biodegradable and nonbiodegradable chemicals by means of different mathematical methods: <i>k</i> nearest neighbors, partial least squares discriminant analysis, and support vector machines, as well as their consensus models. The proposed models and the derived consensus analysis demonstrated good classification performances with respect to already published QSAR models on biodegradation. Relationships between the molecular descriptors selected in each QSAR model and biodegradability were evaluated

    Effect of data preprocessing and machine learning hyperparameters on mass spectrometry imaging models

    No full text
    ABSTRACT: The self-organizing map (SOM) is a nonlinear machine learning algorithm that is particularly well suited for visualizing and analyzing high-dimensional, hyperspectral time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging data. Previously, we compared the capabilities of the SOM with more traditional linear techniques using ToF-SIMS imaging data. Although SOMs perform well with minimal data preprocessing and negligible hyperparameter optimization, it is important to understand how different data preprocessing methods and hyperparameter settings influence the performance of SOMs. While these investigations have been reported outside of the ToF-SIMS field, no such study has been reported for hyperspectral MSI data. To address this, we used two labelled ToF-SIMS imaging data sets, one of which was a polymer microarray data set while the other was semi-synthetic hyperspectral data. The latter was generated using a novel algorithm which we describe. A grid-search was used to evaluate which data preprocessing methods and SOM hyperparameters had the largest impact on the performance of the SOM. This was assessed using multiple linear regression, whereby performance metrics were regressed onto each variable defining the preprocessing-hyperparameter space. We found that preprocessing was generally more important than hyperparameter selection. We also found statistically significant interactions between several parameters studied, suggesting a complex interplay between preprocessing and hyperparameter selection. Importantly, we identified interesting trends, both data set specific and data set agnostic, which we describe and discuss in detail.</p

    Table_1_Improving bitter pit prediction by the use of X-ray fluorescence (XRF): A new approach by multivariate classification.docx

    No full text
    Bitter pit (BP) is one of the most relevant post-harvest disorders for apple industry worldwide, which is often related to calcium (Ca) deficiency at the calyx end of the fruit. Its occurrence takes place along with an imbalance with other minerals, such as potassium (K). Although the K/Ca ratio is considered a valuable indicator of BP, a high variability in the levels of these elements occurs within the fruit, between fruits of the same plant, and between plants and orchards. Prediction systems based on the content of elements in fruit have a high variability because they are determined in samples composed of various fruits. With X-ray fluorescence (XRF) spectrometry, it is possible to characterize non-destructively the signal intensity for several mineral elements at a given position in individual fruit and thus, the complete signal of the mineral composition can be used to perform a predictive model to determine the incidence of bitter pit. Therefore, it was hypothesized that using a multivariate modeling approach, other elements beyond the K and Ca could be found that could improve the current clutter prediction capability. Two studies were carried out: on the first one an experiment was conducted to determine the K/Ca and the whole spectrum using XRF of a balanced sample of affected and non-affected ‘Granny Smith’ apples. On the second study apples of three cultivars (‘Granny Smith’, ‘Brookfield’ and ‘Fuji’), were harvested from two commercial orchards to evaluate the use of XRF to predict BP. With data from the first study a multivariate classification system was trained (balanced database of healthy and BP fruit, consisting in 176 from each group) and then the model was applied on the second study to fruit from two orchards with a history of BP. Results show that when dimensionality reduction was performed on the XRF spectra (1.5 - 8 KeV) of ‘Granny Smith’ apples, comparing fruit with and without BP, along with K and Ca, four other elements (i.e., Cl, Si, P, and S) were found to be deterministic. However, the PCA revealed that the classification between samples (BP vs. non-BP fruit) was not possible by univariate analysis (individual elements or the K/Ca ratio).Therefore, a multivariate classification approach was applied, and the classification measures (sensitivity, specificity, and balanced precision) of the PLS-DA models for all cultivars evaluated (‘Granny Smith’, ‘Fuji’ and ‘Brookfield’) on the full training samples and with both validation procedures (Venetian and Monte Carlo), ranged from 0.76 to 0.92. The results of this work indicate that using this technology at the individual fruit level is essential to understand the factors that determine this disorder and can improve BP prediction of intact fruit.</p

    Image_1_Improving bitter pit prediction by the use of X-ray fluorescence (XRF): A new approach by multivariate classification.jpeg

    No full text
    Bitter pit (BP) is one of the most relevant post-harvest disorders for apple industry worldwide, which is often related to calcium (Ca) deficiency at the calyx end of the fruit. Its occurrence takes place along with an imbalance with other minerals, such as potassium (K). Although the K/Ca ratio is considered a valuable indicator of BP, a high variability in the levels of these elements occurs within the fruit, between fruits of the same plant, and between plants and orchards. Prediction systems based on the content of elements in fruit have a high variability because they are determined in samples composed of various fruits. With X-ray fluorescence (XRF) spectrometry, it is possible to characterize non-destructively the signal intensity for several mineral elements at a given position in individual fruit and thus, the complete signal of the mineral composition can be used to perform a predictive model to determine the incidence of bitter pit. Therefore, it was hypothesized that using a multivariate modeling approach, other elements beyond the K and Ca could be found that could improve the current clutter prediction capability. Two studies were carried out: on the first one an experiment was conducted to determine the K/Ca and the whole spectrum using XRF of a balanced sample of affected and non-affected ‘Granny Smith’ apples. On the second study apples of three cultivars (‘Granny Smith’, ‘Brookfield’ and ‘Fuji’), were harvested from two commercial orchards to evaluate the use of XRF to predict BP. With data from the first study a multivariate classification system was trained (balanced database of healthy and BP fruit, consisting in 176 from each group) and then the model was applied on the second study to fruit from two orchards with a history of BP. Results show that when dimensionality reduction was performed on the XRF spectra (1.5 - 8 KeV) of ‘Granny Smith’ apples, comparing fruit with and without BP, along with K and Ca, four other elements (i.e., Cl, Si, P, and S) were found to be deterministic. However, the PCA revealed that the classification between samples (BP vs. non-BP fruit) was not possible by univariate analysis (individual elements or the K/Ca ratio).Therefore, a multivariate classification approach was applied, and the classification measures (sensitivity, specificity, and balanced precision) of the PLS-DA models for all cultivars evaluated (‘Granny Smith’, ‘Fuji’ and ‘Brookfield’) on the full training samples and with both validation procedures (Venetian and Monte Carlo), ranged from 0.76 to 0.92. The results of this work indicate that using this technology at the individual fruit level is essential to understand the factors that determine this disorder and can improve BP prediction of intact fruit.</p

    Image_2_Improving bitter pit prediction by the use of X-ray fluorescence (XRF): A new approach by multivariate classification.jpeg

    No full text
    Bitter pit (BP) is one of the most relevant post-harvest disorders for apple industry worldwide, which is often related to calcium (Ca) deficiency at the calyx end of the fruit. Its occurrence takes place along with an imbalance with other minerals, such as potassium (K). Although the K/Ca ratio is considered a valuable indicator of BP, a high variability in the levels of these elements occurs within the fruit, between fruits of the same plant, and between plants and orchards. Prediction systems based on the content of elements in fruit have a high variability because they are determined in samples composed of various fruits. With X-ray fluorescence (XRF) spectrometry, it is possible to characterize non-destructively the signal intensity for several mineral elements at a given position in individual fruit and thus, the complete signal of the mineral composition can be used to perform a predictive model to determine the incidence of bitter pit. Therefore, it was hypothesized that using a multivariate modeling approach, other elements beyond the K and Ca could be found that could improve the current clutter prediction capability. Two studies were carried out: on the first one an experiment was conducted to determine the K/Ca and the whole spectrum using XRF of a balanced sample of affected and non-affected ‘Granny Smith’ apples. On the second study apples of three cultivars (‘Granny Smith’, ‘Brookfield’ and ‘Fuji’), were harvested from two commercial orchards to evaluate the use of XRF to predict BP. With data from the first study a multivariate classification system was trained (balanced database of healthy and BP fruit, consisting in 176 from each group) and then the model was applied on the second study to fruit from two orchards with a history of BP. Results show that when dimensionality reduction was performed on the XRF spectra (1.5 - 8 KeV) of ‘Granny Smith’ apples, comparing fruit with and without BP, along with K and Ca, four other elements (i.e., Cl, Si, P, and S) were found to be deterministic. However, the PCA revealed that the classification between samples (BP vs. non-BP fruit) was not possible by univariate analysis (individual elements or the K/Ca ratio).Therefore, a multivariate classification approach was applied, and the classification measures (sensitivity, specificity, and balanced precision) of the PLS-DA models for all cultivars evaluated (‘Granny Smith’, ‘Fuji’ and ‘Brookfield’) on the full training samples and with both validation procedures (Venetian and Monte Carlo), ranged from 0.76 to 0.92. The results of this work indicate that using this technology at the individual fruit level is essential to understand the factors that determine this disorder and can improve BP prediction of intact fruit.</p
    corecore