3 research outputs found

    Matching microscopic and macroscopic responses in glasses

    Get PDF
    Primero reproducimos en las computadoras Janus y Janus II un experimento importante que mide la longitud de la coherencia de los hilados de vidrio a través de la reducción de las barreras de energía libre inducidas por el efecto Zeeman. En segundo lugar, determinamos el comportamiento de escala que permite un análisis cuantitativo de un nuevo experimento informado en la Carta complementaria [S. Guchhait y R. Orbach, Phys. Rev. Lett. 118, 157203 (2017)]. El valor de la longitud de coherencia estimada a través del análisis de las funciones de correlación microscópicas resulta ser cuantitativamente consistente con su medición a través de las funciones de respuesta macroscópica. Además, las susceptibilidades no lineales, recientemente medidas en líquidos formadores de vidrio, se escalan como potencias de la misma longitud microscópica.We first reproduce on the Janus and Janus II computers a milestone experiment that measures the spin glass coherence length through the lowering of free-energy barriers induced by the Zeeman effect. Secondly, we determine the scaling behavior that allows a quantitative analysis of a new experiment reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett. 118, 157203 (2017)]. The value of the coherence length estimated through the analysis of microscopic correlation functions turns out to be quantitatively consistent with its measurement through macroscopic response functions. Further, nonlinear susceptibilities, recently measured in glass-forming liquids, scale as powers of the same microscopic length.• European Research Council. Beca No. NPRGGLASS. Ayuda para Marco Baity Jesi • Unión Europea. Marie Skłodowska- Curie. Beca No. 654971 • Consejo Europeo de Investigación (ERC). Subvención 694925 • University of Syracuse. Beca No. NSF-DMR-305184, para David Yllanes Mosquera • Ministerio de Economía y Competitividad. No. FIS2012-35719-C02, No. FIS2013-42840-P (I+D+i), No. FIS2015-65078-C2, No. FIS2016-76359-P (I+D+i), y No. TEC2016-78358-R • Junta de Extremadura y Fondos FEDER. Contrato parcial GRU10158 • Dipùtación General de Aragón y Fondos Social Europeo. AyudapeerReviewe

    The three-dimensional Ising spin glass in an external magnetic field: The role of the silent majority

    No full text
    We perform equilibrium parallel-tempering simulations of the 3D Ising Edwards-Anderson spin glass in a field, using the Janus computer. A traditional analysis shows no signs of a phase transition. However, we encounter dramatic fluctuations in the behaviour of the model: averages over all the data only describe the behaviour of a small fraction of the data. Therefore, we develop a new approach to study the equilibrium behaviour of the system, by classifying the measurements as a function of a conditioning variate. We propose a finite-size scaling analysis based on the probability distribution function of the conditioning variate, which may accelerate the convergence to the thermodynamic limit. In this way, we find a non-trivial spectrum of behaviours, where some of the measurements behave as the average, while the majority show signs of scale invariance. As a result, we can estimate the temperature interval where the phase transition in a field ought to lie, if it exists. Although this would-be critical regime is unreachable with present resources, the numerical challenge is finally well posed. © 2014 IOP Publishing Ltd and SISSA Medialab srl

    Critical parameters of the three-dimensional Ising spin glass

    No full text
    We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L=40 using the Janus dedicated computer. Our analysis takes into account leading-order corrections to scaling. We obtain Tc=1.1019(29) for the critical temperature, ν=2.562(42) for the thermal exponent, η=-0.3900(36) for the anomalous dimension, and ω=1.12(10) for the exponent of the leading corrections to scaling. Standard (hyper)scaling relations yield α=-5.69(13), β=0.782(10), and γ=6.13(11). We also compute several universal quantities at Tc. © 2013 American Physical Society
    corecore