2,064 research outputs found

    The ACS Virgo Cluster Survey II. Data Reduction Procedures

    Get PDF
    The ACS Virgo Cluster Survey is a large program to carry out multi-color imaging of 100 early-type members of the Virgo Cluster using the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. Deep F475W and F850LP images (~ SDSS g and z) are being used to study the central regions of the program galaxies, their globular cluster systems, and the three-dimensional structure of Virgo itself. In this paper, we describe in detail the data reduction procedures used for the survey, including image registration, drizzling strategies, the computation of weight images, object detection, the identification of globular cluster candidates, and the measurement of their photometric and structural parameters.Comment: 33 pages, 8 figures. Accepted for publication in ApJS. Also available at http://www.physics.rutgers.edu/~pcote/acs/publications.htm

    Trends in the Globular Cluster Luminosity Function of Early-Type Galaxies

    Get PDF
    We present results from a study of the globular cluster luminosity function (GCLF) in a sample of 89 early-type galaxies observed as part of the ACS Virgo Cluster Survey. Using a Gaussian parametrization of the GCLF, we find a highly significant correlation between the GCLF dispersion, sigma, and the galaxy luminosity, M_B, in the sense that the GC systems in fainter galaxies have narrower luminosity functions. The GCLF dispersions in the Milky Way and M31 are fully consistent with this trend, implying that the correlation between sigma and galaxy luminosity is more fundamental than older suggestions that GCLF shape is a function of galaxy Hubble type. We show that the sigma - M_B relation results from a bonafide narrowing of the distribution of (logarithmic) cluster masses in fainter galaxies. We further show that this behavior is mirrored by a steepening of the GC mass function for relatively high masses, M >~ 3 x 10^5 M_sun, a mass regime in which the shape of the GCLF is not strongly affected by dynamical evolution over a Hubble time. We argue that this trend arises from variations in initial conditions and requires explanation by theories of cluster formation. Finally, we confirm that in bright galaxies, the GCLF "turns over" at the canonical mass scale of M_TO ~ 2 x 10^5 M_sun. However, we find that M_TO scatters to lower values (~1-2 x 10^5 M_sun) in galaxies fainter than M_B >~ -18.5, an important consideration if the GCLF is to be used as a distance indicator for dwarf ellipticals.Comment: 4 pages, 3 figures. Accepted for publication in ApJ Letters. Also available at http://www.cadc.hia.nrc.gc.ca/community/ACSVCS/publications.htm

    The ACS Fornax Cluster Survey. II. The Central Brightness Profiles of Early-Type Galaxies: A Characteristic Radius on Nuclear Scales and the Transition from Central Luminosity Deficit to Excess

    Full text link
    We analyse HST surface brightness profiles for 143 early-type galaxies in the Virgo and Fornax Clusters. Sersic models provide accurate descriptions of the global profiles with a notable exception: the observed profiles deviate systematically inside a characteristic "break" radius of R_b ~ 0.02R_e where R_e is the effective radius of the galaxy. The sense of the deviation is such that bright galaxies (M_B < -20) typically show central light deficits with respect to the inward extrapolation of the Sersic model, while the great majority of low- and intermediate-luminosity galaxies (-19.5 < M_B < -15) show central light excesses; galaxies occupying a narrow range of intermediate luminosities (-20 < M_B < -19.5) are usually well fitted by Sersic models over all radii. The slopes of the central surface brightness profiles, when measured at fixed fractions of R_e, vary smoothly as a function of galaxy luminosity in a manner that depends sensitively on the choice of measurement radius. We show that a recent claim of strong bimodality in slope is likely an artifact of the galaxy selection function used in that study. To provide a more robust characterization of the inner regions of galaxies, we introduce a parameter that describes the central luminosity deficit or excess relative to the inward extrapolation of the outer Sersic model. We find that this parameter varies smoothly over the range of ~ 720 in blue luminosity spanned by the Virgo and Fornax sample galaxies, with no evidence for a dichotomy. We argue that the central light excesses (nuclei) in M_B > -19 galaxies may be the analogs of the dense central cores that are predicted by some numerical simulations to form via gas inflows. (ABRIDGED)Comment: To appear in the Astrophysical Journal, December 2007. Full resolution paper available at http://www.cfa.harvard.edu/~ajordan/ACSFCS/Home.htm

    The ACS Virgo Cluster Survey. XIV. Analysis of Color-Magnitude Relations in Globular Cluster Systems

    Get PDF
    We examine the correlation between globular cluster (GC) color and magnitude using HST/ACS imaging for a sample of 79 early-type galaxies (-21.7<M_B<-15.2 mag) with accurate SBF distances from the ACS Virgo Cluster Survey. Using the KMM mixture modeling algorithm, we find a highly significant correlation, d(g-z)/dz = -0.037 +- 0.004, between color and magnitude for the subpopulation of blue GCs in the co-added GC color-magnitude diagram of the three brightest Virgo galaxies (M49, M87 and M60): brighter GCs are redder than their fainter counterparts. For the single GC systems of M87 and M60, we find similar correlations; M49 does not appear to show a significant trend. There is no correlation between (g-z) and M_z for GCs of the red subpopulation. The correlation d(g-z)/dg for the blue subpopulation is much weaker than d(g-z)/dz. Using Monte Carlo simulations, we attribute this to the fact that the blue subpopulation in M_g extends to higher luminosities than the red subpopulation, which biases the KMM fits. The correlation between color and M_z thus is a real effect. This conclusion is supported by biweight fits to the same color distributions. We identify two environmental dependencies of the color-magnitude relation: (1) the slope decreases in significance with decreasing galaxy luminosity; and (2) the slope is stronger for GCs at smaller galactocentric distances. We examine several mechanisms that might give rise to the observed color-magnitude relation: (1) presence of contaminators; (2) accretion of GCs from low-mass galaxies; (3) stochastic effects; (4) capture of field stars by individual GCs; and (5) GC self-enrichment. We conclude that self-enrichment and field-star capture, or a combination of these processes, offer the most promising means of explaining our observations.Comment: 15 pages, 12 figures, accepted for publication in the Astrophysical Journal. Uses emulateapj.cl

    The ACS Virgo Cluster Survey III. Chandra and HST Observations of Low-Mass X-Ray Binaries and Globular Clusters in M87

    Full text link
    The ACIS instrument on board the Chandra X-ray Observatory has been used to carry out the first systematic study of low-mass X-ray binaries (LMXBs) in M87. We identify 174 X-ray point-sources, of which ~150 are likely LMXBs. This LMXB catalog is combined with deep F475W and F850LP images taken with ACS on HST to examine the connection between LMXBs and globular clusters in M87. Of the 1688 globular clusters in our catalog, f_X = 3.6 +- 0.5% contain a LMXB and we find that the metal-rich clusters are 3 +- 1 times more likely to harbor a LMXB than their metal-poor counterparts. In agreement with previous findings for other galaxies, we find that brighter, more metal-rich clusters are more likely to contain a LMXB. For the first time, however, we are able to demonstrate that the probability, p_X, that a given cluster will contain a LMXB depends sensitively on the dynamical properties of the host cluster. Specifically, we use the HST images to measure the half-light radius, concentration index and central density, \rho_0, for each globular, and define a parameter, \Gamma, which is related to the tidal capture and binary-neutron star exchange rate. Our preferred form for p_X is then p_X \propto \Gamma \rho_0^{-0.42\pm0.11} (Z/Z_{\odot})^{0.33\pm0.1}. We argue that if the form of p_X is determined by dynamical processes, then the observed metallicity dependence is a consequence of an increased number of neutron stars per unit mass in metal-rich globular clusters. Finally, we find no compelling evidence for a break in the luminosity distribution of resolved X-ray point sources. Instead, the LMXB luminosity function is well described by a power law with an upper cutoff at L_X ~ 10^39 erg/s. (abridged)Comment: 23 pages, 21 figures. Accepted for publication in ApJ. Also available at http://www.physics.rutgers.edu/~pcote/acs/publications.htm

    Sequence and structure of the mouse gene coding for the largest neurofilament subunit.

    Get PDF
    We have determined the complete nucleotide sequence of the mouse gene encoding the neurofilament NF-H protein. The C-terminal domain of NF-H is very rich in charged amino acids (aa) and contains a 3-aa sequence, Lys-Ser-Pro, that is repeated 51 times within a stretch of 368 aa. The location of this serine-rich repeat in the phosphorylated domain of NF-H indicates that it represents the major protein kinase recognition site. The nfh gene shares two common intron positions with the nfl and nfm genes, but has an additional intron that occurs at a location equivalent to one of the introns in non-neuronal intermediate filament-coding genes. This additional nfh intron may have been acquired via duplication of a primordial intermediate filament gene

    The ACS Virgo Cluster Survey. VIII. The Nuclei of Early-Type Galaxies

    Get PDF
    (Abridged) The ACS Virgo Cluster Survey is an HST program to obtain high-resolution, g and z-band images for 100 early-type members of the Virgo Cluster, spanning a range of ~460 in blue luminosity. Based on this large, homogeneous dataset, we present a sharp upward revision in the frequency of nucleation in early-type galaxies brighter than M_B ~ -15 (66 < f_n < 82%), and find no evidence for nucleated dwarfs to be more concentrated to the center of Virgo than their non-nucleated counterparts. Resolved stellar nuclei are not present in galaxies brighter than M_B ~ -20.5, however, there is no clear evidence from the properties of the nuclei, or from the overall incidence of nucleation, for a change at M_B ~ -17.6, the traditional dividing point between dwarf and giant galaxies. On average, nuclei are ~3.5 mag brighter than a typical globular cluster and have a median half-light radius ~4.2 pc. Nuclear luminosities correlate with nuclear sizes and, in galaxies fainter than M_B ~ -17.6, nuclear colors. Comparing the nuclei to the "nuclear clusters" found in late-type spiral galaxies reveals a close match in terms of size, luminosity and overall frequency, pointing to a formation mechanism that is rather insensitive to the detailed properties of the host galaxy. The mean nuclear-to-galaxy luminosity ratio is indistinguishable from the mean SBH-to-bulge mass ratio, calculated in early-type galaxies with detected supermassive black holes (SBHs). We argue that compact stellar nuclei might be the low-mass counterparts of the SBHs detected in the bright galaxies, and that one should think in terms of "Central Massive Objects" -- either SBHs or compact stellar nuclei -- that accompany the formation of almost all early-type galaxies and contain a mean fraction ~0.3% of the total bulge mass.Comment: ApJ Supplements, accepted. Updated references. The manuscript is 61 pages, including 6 tables and 28 figures. Figures included in this submission are low resolution; a version of the paper containing high-resolution color figures can be downloaded from the ACSVCS website: http://www.cadc.hia.nrc.gc.ca/community/ACSVCS/publications.html#acsvcs

    The ACS Virgo Cluster Survey XI. The Nature of Diffuse Star Clusters in Early-Type Galaxies

    Get PDF
    We use HST/ACS imaging of 100 early-type galaxies in the ACS Virgo Cluster Survey to investigate the nature of diffuse star clusters (DSCs). Compared to globular clusters (GCs), these star clusters have moderately low luminosities (M_V > -8) and a broad distribution of sizes (3 < r_h < 30 pc), but they are principally characterized by their low mean surface brightnesses which can be more than three magnitudes fainter than a typical GC (mu_g > 20 mag arcsec^-2). The median colors of diffuse star cluster systems are red, 1.1 < g-z < 1.6, which is redder than metal-rich GCs and often as red as the galaxy itself. Most DSC systems thus have mean ages older than 5 Gyr or else have super-solar metallicities. We find that 12 galaxies in our sample contain a significant excess of diffuse star cluster candidates -- nine are lenticulars (S0s), and five visibly contain dust. We also find a substantial population of DSCs in the halo of the giant elliptical M49, associated with the companion galaxy VCC 1199. Most DSC systems appear to be both aligned with the galaxy light and associated with galactic disks, but at the same time many lenticulars do not host substantial DSC populations. Diffuse star clusters in our sample share similar characteristics to those identified in other nearby lenticular, spiral, and dwarf galaxies, and we suggest that DSCs preferentially form, survive, and coevolve with galactic disks. Their properties are broadly consistent with those of merged star cluster complexes, and we note that despite being 3 - 5 magnitudes brighter than DSCs, ultra-compact dwarfs have similar surface brightnesses. The closest Galactic analogs to the DSCs are the old open clusters. We suggest that if a diffuse star cluster population did exist in the disk of the Milky Way, it would be very difficult to find. (Abridged)Comment: 16 pages, 18 figures, 2 tables. Accepted for publication in the Astrophysical Journal. Version with high resolution images and Figures 9, 10, 14 in color is available at http://www.physics.rutgers.edu/~pcote/acs/publications.html#acsvcs1

    Discovery and Rossiter-McLaughlin Effect of Exoplanet Kepler-8b

    Get PDF
    We report the discovery and the Rossiter-McLaughlin effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius RP = 1.419 RJ and a mass, MP = 0.60 MJ, yielding a density of 0.26 g cm^-3, among the lowest density planets known. The orbital period is P = 3.523 days and orbital semima jor axis is 0.0483+0.0006/-0.0012 AU. The star has a large rotational v sin i of 10.5 +/- 0.7 km s^-1 and is relatively faint (V = 13.89 mag), both properties deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s^-1, but exhibit a period and phase consistent with the planet implied by the photometry. We securely detect the Rossiter-McLaughlin effect, confirming the planet's existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of lambda = -26.9 +/- 4.6 deg, indicating a moderate inclination of the planetary orbit. Rossiter-McLaughlin measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin-orbit orientations for hot jupiters in general.Comment: 26 pages, 8 figures, 2 tables; In preparation for submission to the Astrophysical Journa
    • 

    corecore