3,193 research outputs found

    Strong spectral evolution during the prompt emission of GRB 070616

    Full text link
    Swift has revealed features in GRB early light curves, such as steep decays and X-ray flares, whose properties are consistent with an internal origin though they are far from understood. The steep X-ray decay is often explained using the curvature effect; however a significant number of GRBs display strong spectral evolution during this phase, and a new mechanism must be invoked to explain this. Of particular interest are the longest duration GRBs in which the early emission can be studied in most detail. Here we present data for GRB 070616, in which the prompt emission shows a complex multipeaked structure, leading to one of the longest prompt emission durations ever recorded. We take advantage of extensive coverage of such a long burst by all Swift instruments. Combining data from Swift and Suzaku we study the evolution of the prompt emission spectrum, following the temporal variability of the peak energy and spectral slope.Comment: 4 pages, 2 figures (Fig 1 in colour), contributed talk, submitted to the proceedings of Gamma Ray Bursts 2007, Santa Fe, New Mexico, November 5-9 200

    Rapidly reconfigurable optically induced photonic crystals in hot rubidium vapor

    Get PDF
    Through periodic index modulation, we create two different types of photonic structures in a heated rubidium vapor for controlled reflection, transmission and diffraction of light. The modulation is achieved through the use of the AC Stark effect resulting from a standing-wave control field. The periodic intensity structures create translationally invariant index profiles analogous to photonic crystals in spectral regions of steep dispersion. Experimental results are consistent with modeling.Comment: 6 pages, 6 figure

    Quantum Chaos, Delocalization, and Entanglement in Disordered Heisenberg Models

    Get PDF
    We investigate disordered one- and two-dimensional Heisenberg spin lattices across a transition from integrability to quantum chaos from both a statistical many-body and a quantum-information perspective. Special emphasis is devoted to quantitatively exploring the interplay between eigenvector statistics, delocalization, and entanglement in the presence of nontrivial symmetries. The implications of basis dependence of state delocalization indicators (such as the number of principal components) is addressed, and a measure of {\em relative delocalization} is proposed in order to robustly characterize the onset of chaos in the presence of disorder. Both standard multipartite and {\em generalized entanglement} are investigated in a wide parameter regime by using a family of spin- and fermion- purity measures, their dependence on delocalization and on energy spectrum statistics being examined. A distinctive {\em correlation between entanglement, delocalization, and integrability} is uncovered, which may be generic to systems described by the two-body random ensemble and may point to a new diagnostic tool for quantum chaos. Analytical estimates for typical entanglement of random pure states restricted to a proper subspace of the full Hilbert space are also established and compared with random matrix theory predictions.Comment: 17 pages, 10 figures, revised versio

    Precision frequency measurements with interferometric weak values

    Get PDF
    We demonstrate an experiment which utilizes a Sagnac interferometer to measure a change in optical frequency of 129 kHz per root Hz with only 2 mW of continuous wave, single mode input power. We describe the measurement of a weak value and show how even higher frequency sensitivities may be obtained over a bandwidth of several nanometers. This technique has many possible applications, such as precision relative frequency measurements and laser locking without the use of atomic lines.Comment: 4 pages, 3 figures, published in PR

    Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification

    Get PDF
    We report on the use of an interferometric weak value technique to amplify very small transverse deflections of an optical beam. By entangling the beam's transverse degrees of freedom with the which-path states of a Sagnac interferometer, it is possible to realize an optical amplifier for polarization independent deflections. The theory for the interferometric weak value amplification method is presented along with the experimental results, which are in good agreement. Of particular interest, we measured the angular deflection of a mirror down to 560 femtoradians and the linear travel of a piezo actuator down to 20 femtometers

    Optimizing the Signal to Noise Ratio of a Beam Deflection Measurement with Interferometric Weak Values

    Get PDF
    The amplification obtained using weak values is quantified through a detailed investigation of the signal to noise ratio for an optical beam deflection measurement. We show that for a given deflection, input power and beam radius, the use of interferometric weak values allows one to obtain the optimum signal to noise ratio using a coherent beam. This method has the advantage of reduced technical noise and allows for the use of detectors with a low saturation intensity. We report on an experiment which improves the signal to noise ratio for a beam deflection measurement by a factor of 54 when compared to a measurement using the same beam size and a quantum limited detector

    Continuous phase amplification with a Sagnac interferometer

    Get PDF
    We describe a weak value inspired phase amplification technique in a Sagnac interferometer. We monitor the relative phase between two paths of a slightly misaligned interferometer by measuring the average position of a split-Gaussian mode in the dark port. Although we monitor only the dark port, we show that the signal varies linearly with phase and that we can obtain similar sensitivity to balanced homodyne detection. We derive the source of the amplification both with classical wave optics and as an inverse weak value.Comment: 5 pages, 4 figures, previously submitted for publicatio

    Showrunners’ Scripts are More Cognitively Complex

    Get PDF
    The term “showrunner” is used in the US entertainment industry to describe the person who is the chief executive and creative officer of a television TV series. The position is very prestigious, often very financially rewarding, and thus highly sought-after. While there are many paths to the role-and even instances of almost overnight success-the vast majority of current showrunners worked their way up over several years from staff writing positions to production-related roles, often across several different series in the process. Conventional wisdom about how to climb the ladder from writer to showrunner strongly emphasizes the importance of both writing and of originality. While there is research linking objective characteristics of pilot episode scripts to success of the subsequent series, we are aware of no studies that consider whether and how scripts written by showrunners differ from those written by staff writers. Towards that end, in this study we compare the scripts written by showrunners with those written by their staff writers for two highly-acclaimed dramatic series from the last decade-The Good Wife (2009) and The Mentalist (2008). Specifically, we test for differences in the “cognitive complexity” of the two groups of scripts. As expected, we find that, on average, scripts written by showrunners exhibited higher cognitive complexity than those written by staff writers. We also found that scripts by writing team members who later became showrunners for original new series had higher cognitive complexity than those written by staff writers who have yet to attain to this role

    Interferometric weak value deflections: quantum and classical treatments

    Get PDF
    We derive the weak value deflection given in a paper by Dixon et al. (Phys. Rev. Lett. 102, 173601 (2009)) both quantum mechanically and classically. This paper is meant to cover some of the mathematical details omitted in that paper owing to space constraints

    Extracting an Entanglement Signature from Only Classical Mutual Information

    Get PDF
    We introduce a quantity which is formed using classical notions of mutual information and which is computed using the results of projective measurements. This quantity constitutes a sufficient condition for entanglement and represents the amount of information that can be extracted from a bipartite system for spacelike separated observers. In addition to discussion, we provide simulations as well as experimental results for the singlet and maximally correlated mixed states
    • …
    corecore