319 research outputs found

    NETC Tank Farm Five Hazardous Waste Cleanup: An Investigation and Evaluation of Cleanup Practices for Waste Oil Tanks at NETC, Newport, RI

    Get PDF
    My intention in this paper is to focus on the chronic hazardous waste problem stemming from past disposal/storage practices. More specifically, to focus on two underground storage tanks at NETC which were used for the storage of hazardous waste (waste oil tanks). It is now common knowledge that old underground storage tanks throughout the country present a potential ground water contamination hazard which must be dealt with. Over the past decade naval installations have heightened their awareness of environmental responsibilities and implemented recycling programs for the disposal of paper, glass, etc. and have even established programs for fuel collection and recycling for heating plants. The navy and in this specific case the Naval Education and Training Center of Newport RI is currently paying the price for past hazardous waste mistakes

    Space physics analysis network node directory (The Yellow Pages): Fourth edition

    Get PDF
    The Space Physics Analysis Network (SPAN) is a component of the global DECnet Internet, which has over 17,000 host computers. The growth of SPAN from its implementation in 1981 to its present size of well over 2,500 registered SPAN host computers, has created a need for users to acquire timely information about the network through a central source. The SPAN Network Information Center (SPAN-NIC) an online facility managed by the National Space Science Data Center (NSSDC) was developed to meet this need for SPAN-wide information. The remote node descriptive information in this document is not currently contained in the SPAN-NIC database, but will be incorporated in the near future. Access to this information is also available to non-DECnet users over a variety of networks such as Telenet, the NASA Packet Switched System (NPSS), and the TCP/IP Internet. This publication serves as the Yellow Pages for SPAN node information. The document also provides key information concerning other computer networks connected to SPAN, nodes associated with each SPAN routing center, science discipline nodes, contacts for primary SPAN nodes, and SPAN reference information. A section on DECnet Internetworking discusses SPAN connections with other wide-area DECnet networks (many with thousands of nodes each). Another section lists node names and their disciplines, countries, and institutions in the SPAN Network Information Center Online Data Base System. All remote sites connected to US-SPAN and European-SPAN (E-SPAN) are indexed. Also provided is information on the SPAN tail circuits, i.e., those remote nodes connected directly to a SPAN routing center, which is the local point of contact for resolving SPAN-related problems. Reference material is included for those who wish to know more about SPAN. Because of the rapid growth of SPAN, the SPAN Yellow Pages is reissued periodically

    In-Flight Performance of the Water Vapor Monitor Onboard the Sofia Observatory

    Get PDF
    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) airborne observatory flies in a modified B747-SP aircraft in the lower stratosphere above more than 99.9% of the Earth's water vapor. As low as this residual water vapor is, it will still affect SOFIA's infrared and sub-millimeter astronomical observations. As a result, a heterodyne instrument has been developed to observe the strength and shape of the 1830Hz rotational line of water, allowing measurements of the integrated water vapor overburden in flight. In order to be useful in correcting the astronomical signals, the required measured precipitable water vapor accuracy must be 2 microns or better, 3 sigma, and measured at least once a minute. The Water Vapor Monitor has flown 22 times during the SOFIA Early Science shared-risk period. The instrument water vapor overburden data obtained were then compared with concurrent data from GOES-V satellites to perform a preliminary calibration of the measurements. This presentation will cover the.results of these flights. The final flight calibration necessary to reach the required accuracy will await subsequent flights following the SOFIA observatory upgrade that is taking place during the spring and summer of 2012

    Seed Bank and Seasonal Patterns of the Eukaryotic SAR (Stramenopila, Alveolata and Rhizaria) Clade in a New England Vernal Pool

    Get PDF
    Vernal pools are dynamic freshwater ecosystems that dry during the summer. These unique habitats are vital to a number of well-studied animal species but there is little documentation of the diversity of the SAR—Stramenopila, Alveolata and Rhizaria—clade in vernal pools. Here, we characterize the protist community over a portion of the hydroperiod as the vernal pool transitions from its winter stage through its drying out in late summer. Our study focuses on the SAR clade, which encompasses a broad range of morphological diversity and a variety of trophic modes within the microbial food web. Using high-throughput sequencing, we investigate the total community (DNA) and the active (RNA) members on a temporal scale. These molecular data reveal seasonality within microbial communities, suggesting a larger community of autotrophs in the winter followed by an increase in heterotrophs in the summer. Our analysis also suggests the presence of a microbial seed bank, a collection of encysted protists, in the sediments below the pool. We hypothesize the seed bank allows for community turnover: taxa encyst in the sediment in poor environmental conditions and exit their cysts when favorable conditions occur. We also observe seasonal preference and partitioning of the environment within clades of close relatives, including taxa closely related to the ciliate Halteria and the oomycete Haptoglossa. These data provide insights into the seasonal patterns of a frequently overlooked group of organisms in this unusual environment
    • …
    corecore