278 research outputs found

    Charge-Carrier Recombination in Halide Perovskites.

    Get PDF
    The success of halide perovskites in a host of optoelectronic applications is often attributed to their long photoexcited carrier lifetimes, which has led to charge-carrier recombination processes being described as unique compared to other semiconductors. Here, we integrate recent literature findings to provide a critical assessment of the factors we believe are most likely controlling recombination in the most widely studied halide perovskite systems. We focus on four mechanisms that have been proposed to affect measured charge carrier recombination lifetimes, namely: (1) recombination via trap states, (2) polaron formation, (3) the indirect nature of the bandgap (e.g., Rashba effect), and (4) photon recycling. We scrutinize the evidence for each case and the implications of each process on carrier recombination dynamics. Although they have attracted considerable speculation, we conclude that multiple trapping or hopping in shallow trap states, and the possible indirect nature of the bandgap (e.g., Rashba effect), seem to be less likely given the combined evidence, at least in high-quality samples most relevant to solar cells and light-emitting diodes. On the other hand, photon recycling appears to play a clear role in increasing apparent lifetime for samples with high photoluminescence quantum yields. We conclude that polaron dynamics are intriguing and deserving of further study. We highlight potential interdependencies of these processes and suggest future experiments to better decouple their relative contributions. A more complete understanding of the recombination processes could allow us to rationally tailor the properties of these fascinating semiconductors and will aid the discovery of other materials exhibiting similarly exceptional optoelectronic properties.EPSRC DTP Studentshi

    Optical tuning of the diamond Fermi level measured by correlated scanning probe microscopy and quantum defect spectroscopy

    Full text link
    Quantum technologies based on quantum point defects in crystals require control over the defect charge state. Here we tune the charge state of shallow nitrogen-vacancy and silicon-vacancy centers by locally oxidizing a hydrogenated surface with moderate optical excitation and simultaneous spectral monitoring. The loss of conductivity and change in work function due to oxidation are measured in atmosphere using conductive atomic force microscopy (C-AFM) and Kelvin probe force microscopy (KPFM). We correlate these scanning probe measurements with optical spectroscopy of the nitrogen-vacancy and silicon-vacancy centers created via implantation and annealing 15-25 nm beneath the diamond surface. The observed charge state of the defects as a function of optical exposure demonstrates that laser oxidation provides a way to precisely tune the Fermi level over a range of at least 2.00 eV. We also observe a significantly larger oxidation rate for implanted surfaces compared to unimplanted surfaces under ambient conditions. Combined with knowledge of the electron affinity of a surface, these results suggest KPFM is a powerful, high-spatial resolution technique to advance surface Fermi level engineering for charge stabilization of quantum defects

    (3-Aminopropyl)trimethoxysilane Surface Passivation Improves Perovskite Solar Cell Performance by Reducing Surface Recombination Velocity

    Full text link
    We demonstrate reduced surface recombination velocity (SRV) and enhanced power-conversion efficiency (PCE) in mixed-cation mixed-halide perovskite solar cells by using (3-aminopropyl)trimethoxysilane (APTMS) as a surface passivator. We show the APTMS serves to passivate defects at the perovskite surface, while also decoupling the perovskite from detrimental interactions at the C60 interface. We measure a SRV of ~125 + 14 cm/s, and a concomitant increase of ~100 meV in quasi-Fermi level splitting in passivated devices compared to the controls. We use time-resolved photoluminescence and excitation-correlation photoluminescence spectroscopy to show that APTMS passivation effectively suppresses non-radiative recombination. We show that APTMS improves both the fill factor and open-circuit voltage (VOC), increasing VOC from 1.03 V for control devices to 1.09 V for APTMS-passivated devices, which leads to PCE increasing from 15.90% to 18.03%. We attribute enhanced performance to reduced defect density or suppressed nonradiative recombination and low SRV at the perovskite/transporting layers interface.Comment: 22 pages, 6 figure
    corecore