292 research outputs found

    Effect of Breast Milk Lead on Infant Blood Lead Levels at 1 Month of Age

    Get PDF
    Nursing infants may be exposed to lead from breast milk, but relatively few data exist with which to evaluate and quantify this relationship. This route of exposure constitutes a potential infant hazard from mothers with current ongoing exposure to lead as well as from mothers who have been exposed previously due to the redistribution of cumulative maternal bone lead stores. We studied the relationship between maternal breast milk lead and infant blood lead levels among 255 mother–infant pairs exclusively or partially breast-feeding through 1 month of age in Mexico City. A rigorous, well-validated technique was used to collect, prepare, and analyze the samples of breast milk to minimize the potential for environmental contamination and maximize the percent recovery of lead. Umbilical cord and maternal blood lead were measured at delivery; 1 month after delivery (± 5 days) maternal blood, bone, and breast milk and infant blood lead levels were obtained. Levels of lead at 1 month postpartum were, for breast milk, 0.3–8.0 μg/L (mean ± SD, 1.5 ± 1.2); maternal blood lead, 2.9–29.9 μg/dL (mean ± SD, 9.4 ± 4.5); and infant blood lead, 1.0–23.1 μg/dL (mean ± SD, 5.5 ± 3.0). Infant blood lead at 1 month postpartum was significantly correlated with umbilical cord (Spearman correlation coefficient r(S) = 0.40, p < 0.0001) and maternal (r(S) = 0.42, p < 0.0001) blood lead at delivery and with maternal blood (r(S) = 0.67, p < 0.0001), patella (r(S) = 0.19, p = 0.004), and breast milk (r(S) = 0.32, p < 0.0001) lead at 1 month postpartum. Adjusting for cord blood lead, infant weight change, and reported breast-feeding status, a difference of approximately 2 μg/L (ppb; from the midpoint of the lowest quartile to the midpoint of the highest quartile) breast milk lead was associated with a 0.82 μg/dL increase in blood lead for breast-feeding infants at 1 month of age. Breast milk lead accounted for 12% of the variance of infant blood lead levels, whereas maternal blood lead accounted for 30%. Although these levels of lead in breast milk were low, they clearly have a strong influence on infant blood lead levels over and above the influence of maternal blood lead. Additional information on the lead content of dietary alternatives and interactions with other nutritional factors should be considered. However, because human milk is the best and most complete nutritional source for young infants, breast-feeding should be encouraged because the absolute values of the effects are small within this range of lead concentrations

    Distribution of metals exposure and associations with cardiometabolic risk factors in the “Modeling the Epidemiologic Transition Study”

    Get PDF
    Background: Metals are known endocrine disruptors and have been linked to cardiometabolic diseases via multiple potential mechanisms, yet few human studies have both the exposure variability and biologically-relevant phenotype data available. We sought to examine the distribution of metals exposure and potential associations with cardiometabolic risk factors in the “Modeling the Epidemiologic Transition Study” (METS), a prospective cohort study designed to assess energy balance and change in body weight, diabetes and cardiovascular disease risk in five countries at different stages of social and economic development. Methods: Young adults (25–45 years) of African descent were enrolled (N = 500 from each site) in: Ghana, South Africa, Seychelles, Jamaica and the U.S.A. We randomly selected 150 blood samples (N = 30 from each site) to determine concentrations of selected metals (arsenic, cadmium, lead, mercury) in a subset of participants at baseline and to examine associations with cardiometabolic risk factors. Results: Median (interquartile range) metal concentrations (μg/L) were: arsenic 8.5 (7.7); cadmium 0.01 (0.8); lead 16.6 (16.1); and mercury 1.5 (5.0). There were significant differences in metals concentrations by: site location, paid employment status, education, marital status, smoking, alcohol use, and fish intake. After adjusting for these covariates plus age and sex, arsenic (OR 4.1, 95% C.I. 1.2, 14.6) and lead (OR 4.0, 95% C.I. 1.6, 9.6) above the median values were significantly associated with elevated fasting glucose. These associations increased when models were further adjusted for percent body fat: arsenic (OR 5.6, 95% C.I. 1.5, 21.2) and lead (OR 5.0, 95% C.I. 2.0, 12.7). Cadmium and mercury were also related with increased odds of elevated fasting glucose, but the associations were not statistically significant. Arsenic was significantly associated with increased odds of low HDL cholesterol both with (OR 8.0, 95% C.I. 1.8, 35.0) and without (OR 5.9, 95% C.I. 1.5, 23.1) adjustment for percent body fat. Conclusions: While not consistent for all cardiometabolic disease markers, these results are suggestive of potentially important associations between metals exposure and cardiometabolic risk. Future studies will examine these associations in the larger cohort over time

    Fetal Lead Exposure at Each Stage of Pregnancy as a Predictor of Infant Mental Development

    Get PDF
    BACKGROUND: The impact of prenatal lead exposure on neurodevelopment remains unclear in terms of consistency, the trimester of greatest vulnerability, and the best method for estimating fetal lead exposure. OBJECTIVE: We studied prenatal lead exposure’s impact on neurodevelopment using repeated measures of fetal dose as reflected by maternal whole blood and plasma lead levels. METHODS: We measured lead in maternal plasma and whole blood during each trimester in 146 pregnant women in Mexico City. We then measured umbilical cord blood lead at delivery and, when offspring were 12 and 24 months of age, measured blood lead and administered the Bayley Scales of Infant Development. We used multivariate regression, adjusting for covariates and 24-month blood lead, to compare the impacts of our pregnancy measures of fetal lead dose. RESULTS: Maternal lead levels were moderately high with a first-trimester blood lead mean (± SD) value of 7.1 ± 5.1 μg/dL and 14% of values ≥10 μg/dL. Both maternal plasma and whole blood lead during the first trimester (but not in the second or third trimester) were significant predictors (p < 0.05) of poorer Mental Development Index (MDI) scores. In models combining all three trimester measures and using standardized coefficients, the effect of first-trimester maternal plasma lead was somewhat greater than the effect of first-trimester maternal whole blood lead and substantially greater than the effects of second- or third-trimester plasma lead, and values averaged over all three trimesters. A 1-SD change in first-trimester plasma lead was associated with a reduction in MDI score of 3.5 points. Postnatal blood lead levels in the offspring were less strongly correlated with MDI scores. CONCLUSIONS: Fetal lead exposure has an adverse effect on neurodevelopment, with an effect that may be most pronounced during the first trimester and best captured by measuring lead in either maternal plasma or whole blood

    Urinary Phthalate Metabolites in Relation to Preterm Birth in Mexico City

    Get PDF
    Background: Rates of preterm birth have been rising over the past several decades. Factors contributing to this trend remain largely unclear, and exposure to environmental contaminants may play a role. Objective: We investigated the relationship between phthalate exposure and preterm birth. Methods: Within a large Mexican birth cohort study, we compared third-trimester urinary phthalate metabolite concentrations in 30 women who delivered preterm (< 37 weeks of gestation) with those of 30 controls (≥ 37 weeks of gestation). Results: Concentrations of most of the metabolites were similar to those reported among U.S. females, although in the present study mono-n-butyl phthalate (MBP) concentrations were higher and monobenzyl phthalate (MBzP) concentrations lower. In a crude comparison before correcting for urinary dilution, geometric mean urinary concentrations were higher for the phthalate metabolites MBP, MBzP, mono(3-carboxylpropyl) phthalate, and four metabolites of di(2-ethyl-hexyl) phthalate among women who subsequently delivered preterm. These differences remained, but were somewhat lessened, after correction by specific gravity or creatinine. In multivariate logistic regression analysis adjusted for potential confounders, elevated odds of having phthalate metabolite concentrations above the median level were found. Conclusions: We found that phthalate exposure is prevalent among this group of pregnant women in Mexico and that some phthalates may be associated with preterm birth

    Associations of Early Childhood Manganese and Lead Coexposure with Neurodevelopment

    Get PDF
    Background: Most toxicologic studies focus on a single agent, although this does not reflect real-world scenarios in which humans are exposed to multiple chemicals
    corecore