4,422 research outputs found

    Pursuing Parameters for Critical Density Dark Matter Models

    Get PDF
    We present an extensive comparison of models of structure formation with observations, based on linear and quasi-linear theory. We assume a critical matter density, and study both cold dark matter models and cold plus hot dark matter models. We explore a wide range of parameters, by varying the fraction of hot dark matter Ων\Omega_{\nu}, the Hubble parameter hh and the spectral index of density perturbations nn, and allowing for the possibility of gravitational waves from inflation influencing large-angle microwave background anisotropies. New calculations are made of the transfer functions describing the linear power spectrum, with special emphasis on improving the accuracy on short scales where there are strong constraints. For assessing early object formation, the transfer functions are explicitly evaluated at the appropriate redshift. The observations considered are the four-year {\it COBE} observations of microwave background anisotropies, peculiar velocity flows, the galaxy correlation function, and the abundances of galaxy clusters, quasars and damped Lyman alpha systems. Each observation is interpreted in terms of the power spectrum filtered by a top-hat window function. We find that there remains a viable region of parameter space for critical-density models when all the dark matter is cold, though hh must be less than 0.5 before any fit is found and nn significantly below unity is preferred. Once a hot dark matter component is invoked, a wide parameter space is acceptable, including n1n\simeq 1. The allowed region is characterized by \Omega_\nu \la 0.35 and 0.60 \la n \la 1.25, at 95 per cent confidence on at least one piece of data. There is no useful lower bound on hh, and for curious combinations of the other parameters it is possible to fit the data with hh as high as 0.65.Comment: 19 pages LaTeX file (uses mn.sty). Figures *not* included due to length. We strongly recommend obtaining the full paper, either by WWW at http://star-www.maps.susx.ac.uk/papers/lsstru_papers.html (UK) or http://www.bartol.udel.edu/~bob/papers (US), or by e-mailing ARL. Final version, to appear MNRAS. Main revision is update to four-year COBE data. Miscellaneous other changes and reference updates. No significant changes to principal conclusion

    A Statistical Treatment of the Gamma-Ray Burst "No Host Galaxy" Problem: II. Energies of Standard Candle Bursts

    Full text link
    With the discovery that the afterglows after some bursts are coincident with faint galaxies, the search for host galaxies is no longer a test of whether bursts are cosmological, but rather a test of particular cosmological models. The methodology we developed to investigate the original "no host galaxy" problem is equally valid for testing different cosmological models, and is applicable to the galaxies coincident with optical transients. We apply this methodology to a family of models where we vary the total energy of standard candle bursts. We find that total isotropic energies of E<2e52~erg are ruled out while log(E)~53 erg is favored.Comment: To appear in Ap.J., 514, 15 pages + 7 figures, AASTeX 4.0. Revisions are: additional author, updated data, and minor textual change

    Magnetic light

    Full text link
    In this paper we report on the observation of novel and highly unusual magnetic state of light. It appears that in small holes light quanta behave as small magnets so that light propagation through such holes may be affected by magnetic field. When arrays of such holes are made, magnetic light of the individual holes forms novel and highly unusual two-dimensional magnetic light material. Magnetic light may soon become a great new tool for quantum communication and computing.Comment: Submitted to Phys.Rev.Lett., 3 figure

    The Data Analysis Pipeline for the SDSS-IV MaNGA IFU Galaxy Survey: Emission-Line Modeling

    Get PDF
    SDSS-IV MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is the largest integral-field spectroscopy survey to date, aiming to observe a statistically representative sample of 10,000 low-redshift galaxies. In this paper we study the reliability of the emission-line fluxes and kinematic properties derived by the MaNGA Data Analysis Pipeline (DAP). We describe the algorithmic choices made in the DAP with regards to measuring emission-line properties, and the effect of our adopted strategy of simultaneously fitting the continuum and line emission. The effect of random errors are quantified by studying various fit-quality metrics, idealized recovery simulations and repeat observations. This analysis demonstrates that the emission lines are well-fit in the vast majority of the MaNGA dataset and the derived fluxes and errors are statistically robust. The systematic uncertainty on emission-line properties introduced by the choice of continuum templates is also discussed. In particular, we test the effect of using different stellar libraries and simple stellar-population models on the derived emission-line fluxes and the effect of introducing different tying prescriptions for the emission-line kinematics. We show that these effects can generate large (>> 0.2 dex) discrepancies at low signal-to-noise and for lines with low equivalent width (EW); however, the combined effect is noticeable even for Hα\alpha EW >> 6~\AA. We provide suggestions for optimal use of the data provided by SDSS data release 15 and propose refinements on the \DAP\ for future MaNGA data releases.Comment: accepted on A

    Evolution of a Sexually Dimorphic Trait in a Broadly Distributed Topminnow (Fundulus Olivaceus)

    Get PDF
    Understanding the interaction between sexual and natural selection within variable environments is crucial to our understanding of evolutionary processes. The handicap principle predicts females will prefer males with exaggerated traits provided those traits are indicators of male quality to ensure direct or indirect female benefits. Spatial variability in ecological factors is expected to alter the balance between sexual and natural selection that defines the evolution of such traits. Male and female blackspotted topminnows (Fundulidae: Fundulus olivaceus) display prominent black dorsolateral spots that are variable in number across its broad range. We investigated variability in spot phenotypes at 117 sites across 13 river systems and asked if the trait was sexually dimorphic and positively correlated with measures of fitness (condition and gonadosomatic index [GSI]). Laboratory and mesocosm experiments assessed female mate choice and predation pressure on spot phenotypes. Environmental and community data collected at sampling locations were used to assess predictive models of spot density at the individual, site, and river system level. Greater number of spots was positively correlated with measures of fitness in males. Males with more spots were preferred by females and suffered greater mortality due to predation. Water clarity (turbidity) was the best predictor of spot density on the drainage scale, indicating that sexual and natural selection for the trait may be mediated by local light environments

    Evolution of a Sexually Dimorphic Trait In a Broadly Distributed Topminnow (\u3ci\u3eFundulus olivaceus\u3c/i\u3e)

    Get PDF
    Understanding the interaction between sexual and natural selection within variable environments is crucial to our understanding of evolutionary processes. The handicap principle predicts females will prefer males with exaggerated traits provided those traits are indicators of male quality to ensure direct or indirect female benefits. Spatial variability in ecological factors is expected to alter the balance between sexual and natural selection that defines the evolution of such traits. Male and female blackspotted topminnows (Fundulidae: Fundulus olivaceus) display prominent black dorsolateral spots that are variable in number across its broad range. We investigated variability in spot phenotypes at 117 sites across 13 river systems and asked if the trait was sexually dimorphic and positively correlated with measures of fitness (condition and gonadosomatic index [GSI]). Laboratory and mesocosm experiments assessed femalemate choice and predation pressure on spot phenotypes. Environmental and community data collected at sampling locations were used to assess predictive models of spot density at the individual, site, and river system level. Greater number of spots was positively correlated with measures of fitness in males. Males with more spots were preferred by females and suffered greater mortality due to predation. Water clarity (turbidity) was the best predictor of spot density on the drainage scale, indicating that sexual and natural selection for the trait may be mediated by local light environments
    corecore