8,047 research outputs found

    Outcomes and Duration of Tidal Evolution in a Star-Planet-Moon System

    Full text link
    We formulated tidal decay lifetimes for hypothetical moons orbiting extrasolar planets with both lunar and stellar tides. Previous work neglected the effect of lunar tides on planet rotation, and are therefore applicable only to systems in which the moon's mass is much less than that of the planet. This work, in contrast, can be applied to the relatively large moons that might be detected around newly-discovered Neptune-mass and super-Earth planets. We conclude that moons are more stable when the planet/moon systems are further from the parent star, the planets are heavier, or the parent stars are lighter. Inclusion of lunar tides allows for significantly longer lifetimes for a massive moon relative to prior formulations. We expect that the semi-major axis of the planet hosting the first detected exomoon around a G-type star is 0.4-0.6 AU and is 0.2-0.4 AU for an M-type star.Comment: Accepted for publication in ApJ, 19 pages, 19 figure

    Rapid Effective Trace-Back Capability Value in Reducing the Cost of a Foot and Mouth Disease Event

    Get PDF
    This study evaluates how the availability of animal tracing affects the cost of a hypothetical Foot and Mouth Disease (FMD) outbreak in the Texas High Plains using alternative tracing scenarios. To accomplish this objective, the AusSpread epidemic disease spread model (Ward et al., 2006) is used to simulate a High Plains FMD outbreak under different animal tracing possibilities. A simple economic costing module (Elbakidze, 2008) is used to determine the savings in terms of animal disease mitigation costs from rapid, effective trace-back. The savings from increased traceability are then be compared to the cost of a functional National Animal Identification System (NAIS). Initial results indicate that rapid, effective tracing reduces the overall cost of disease outbreaks and that the benefits per animal in terms of reduced cost of an outbreak more than outweigh the annualized cost per animal of implementing a NAIS. A value of time related to controlling an outbreak is estimated to have increased benefits from an identification system that incorporates a rapid response capability. We also find the level of benefits vary depending on the location of initial infection and whether or not welfare slaughter occurs.Traceability, Foot and Mouth Disease, Economics, Agricultural and Food Policy, Livestock Production/Industries,

    Escape path complexity and its context dependency in Pacific blue-eyes (Pseudomugil signifer)

    Full text link
    The escape trajectories animals take following a predatory attack appear to show high degrees of apparent 'randomness' - a property that has been described as 'protean behaviour'. Here we present a method of quantifying the escape trajectories of individual animals using a path complexity approach. When fish (Pseudomugil signifer) were attacked either on their own or in groups, we find that an individual's path rapidly increases in entropy (our measure of complexity) following the attack. For individuals on their own, this entropy remains elevated (indicating a more random path) for a sustained period (10 seconds) after the attack, whilst it falls more quickly for individuals in groups. The entropy of the path is context dependent. When attacks towards single fish come from greater distances, a fish's path shows less complexity compared to attacks that come from short range. This context dependency effect did not exist, however, when individuals were in groups. Nor did the path complexity of individuals in groups depend on a fish's local density of neighbours. We separate out the components of speed and direction changes to determine which of these components contributes to the overall increase in path complexity following an attack. We found that both speed and direction measures contribute similarly to an individual's path's complexity in absolute terms. Our work highlights the adaptive behavioural tactics that animals use to avoid predators and also provides a novel method for quantifying the escape trajectories of animals.Comment: 9 page

    On The Orbital Evolution of Jupiter Mass Protoplanet Embedded in A Self-Gravity Disk

    Full text link
    We performed a series of hydro-dynamic simulations to investigate the orbital migration of a Jovian planet embedded in a proto-stellar disk. In order to take into account of the effect of the disk's self gravity, we developed and adopted an \textbf{Antares} code which is based on a 2-D Godunov scheme to obtain the exact Reimann solution for isothermal or polytropic gas, with non-reflecting boundary conditions. Our simulations indicate that in the study of the runaway (type III) migration, it is important to carry out a fully self consistent treatment of the gravitational interaction between the disk and the embedded planet. Through a series of convergence tests, we show that adequate numerical resolution, especially within the planet's Roche lobe, critically determines the outcome of the simulations. We consider a variety of initial conditions and show that isolated, non eccentric protoplanet planets do not undergo type III migration. We attribute the difference between our and previous simulations to the contribution of a self consistent representation of the disk's self gravity. Nevertheless, type III migration cannot be completely suppressed and its onset requires finite amplitude perturbations such as that induced by planet-planet interaction. We determine the radial extent of type III migration as a function of the disk's self gravity.Comment: 19 pages, 13 figure

    Seeing with sound? Exploring different characteristics of a visual-to-auditory sensory substitution device

    Get PDF
    Sensory substitution devices convert live visual images into auditory signals, for example with a web camera (to record the images), a computer (to perform the conversion) and headphones (to listen to the sounds). In a series of three experiments, the performance of one such device (‘The vOICe’) was assessed under various conditions on blindfolded sighted participants. The main task that we used involved identifying and locating objects placed on a table by holding a webcam (like a flashlight) or wearing it on the head (like a miner’s light). Identifying objects on a table was easier with a hand-held device, but locating the objects was easier with a head-mounted device. Brightness converted into loudness was less effective than the reverse contrast (dark being loud), suggesting that performance under these conditions (natural indoor lighting, novice users) is related more to the properties of the auditory signal (ie the amount of noise in it) than the cross-modal association between loudness and brightness. Individual differences in musical memory (detecting pitch changes in two sequences of notes) was related to the time taken to identify or recognise objects, but individual differences in self-reported vividness of visual imagery did not reliably predict performance across the experiments. In general, the results suggest that the auditory characteristics of the device may be more important for initial learning than visual associations

    On the physical origins of the negative index of refraction

    Full text link
    The physical origins of negative refractive index are derived from a dilute microscopic model, producing a result that is generalized to the dense condensed phase limit. In particular, scattering from a thin sheet of electric and magnetic dipoles driven above resonance is used to form a fundamental description for negative refraction. Of practical significance, loss and dispersion are implicit in the microscopic model. While naturally occurring negative index materials are unavailable, ferromagnetic and ferroelectric materials provide device design opportunities.Comment: 4 pages, 1 figur

    Uniform polynomial rates of convergence for a class of L\'evy-driven controlled SDEs arising in multiclass many-server queues

    Full text link
    We study the ergodic properties of a class of controlled stochastic differential equations (SDEs) driven by α\alpha-stable processes which arise as the limiting equations of multiclass queueing models in the Halfin-Whitt regime that have heavy-tailed arrival processes. When the safety staffing parameter is positive, we show that the SDEs are uniformly ergodic and enjoy a polynomial rate of convergence to the invariant probability measure in total variation, which is uniform over all stationary Markov controls resulting in a locally Lipschitz continuous drift. We also derive a matching lower bound on the rate of convergence (under no abandonment). On the other hand, when all abandonment rates are positive, we show that the SDEs are exponentially ergodic uniformly over the above-mentioned class of controls. Analogous results are obtained for L\'evy-driven SDEs arising from multiclass many-server queues under asymptotically negligible service interruptions. For these equations, we show that the aforementioned ergodic properties are uniform over all stationary Markov controls. We also extend a key functional central limit theorem concerning diffusion approximations so as to make it applicable to the models studied here

    Limits on Radio Continuum Emission from a Sample of Candidate Contracting Starless Cores

    Get PDF
    We used the NRAO Very Large Array to search for 3.6 cm continuum emission from embedded protostars in a sample of 8 nearby ``starless'' cores that show spectroscopic evidence for infalling motions in molecular emission lines. We detect a total of 13 compact sources in the eight observed fields to 5 sigma limiting flux levels of typically 0.09 mJy. None of these sources lie within 1' of the central positions of the cores, and they are all likely background objects. Based on an extrapolation of the empirical correlation between the bolometric luminosity and 3.6 cm luminosity for the youngest protostars, these null-detections place upper limits of ~0.1 L_sun (d/140pc)^2 on the luminosities of protostellar sources embedded within these cores. These limits, together with the extended nature of the inward motions inferred from molecular line mapping (Lee et al. 2001), are inconsistent with the inside-out collapse model of singular isothermal spheres and suggest a less centrally condensed phase of core evolution during the earliest stages of star formation.Comment: Accepted to the Astronomical Journal; 12 pages, 1 figur
    • 

    corecore