924 research outputs found

    Infrared Lightcurves of Near Earth Objects

    Get PDF
    We present lightcurves and derive periods and amplitudes for a subset of 38 near earth objects (NEOs) observed at 4.5 microns with the IRAC camera on the the Spitzer Space Telescope, many of them having no previously reported rotation periods. This subset was chosen from about 1800 IRAC NEO observations as having obvious periodicity and significant amplitude. For objects where the period observed did not sample the full rotational period, we derived lower limits to these parameters based on sinusoidal fits. Lightcurve durations ranged from 42 to 544 minutes, with derived periods from 16 to 400 minutes. We discuss the effects of lightcurve variations on the thermal modeling used to derive diameters and albedos from Spitzer photometry. We find that both diameters and albedos derived from the lightcurve maxima and minima agree with our previously published results, even for extreme objects, showing the conservative nature of the thermal model uncertainties. We also evaluate the NEO rotation rates, sizes, and their cohesive strengths.Comment: 16 pages, 4 figures, 3 tables, to appear in the Astrophysical Journal Supplement Serie

    A Consistency Test of Spectroscopic Gravities for Late-Type Stars

    Get PDF
    Chemical analyses of late-type stars are usually carried out following the classical recipe: LTE line formation and homogeneous, plane-parallel, flux-constant, and LTE model atmospheres. We review different results in the literature that have suggested significant inconsistencies in the spectroscopic analyses, pointing out the difficulties in deriving independent estimates of the stellar fundamental parameters and hence,detecting systematic errors. The trigonometric parallaxes measured by the HIPPARCOS mission provide accurate appraisals of the stellar surface gravity for nearby stars, which are used here to check the gravities obtained from the photospheric iron ionization balance. We find an approximate agreement for stars in the metallicity range -1 <= [Fe/H] <= 0, but the comparison shows that the differences between the spectroscopic and trigonometric gravities decrease towards lower metallicities for more metal-deficient dwarfs (-2.5 <= [Fe/H] <= -1.0), which casts a shadow upon the abundance analyses for extreme metal-poor stars that make use of the ionization equilibrium to constrain the gravity. The comparison with the strong-line gravities derived by Edvardsson (1988) and Fuhrmann (1998a) confirms that this method provides systematically larger gravities than the ionization balance. The strong-line gravities get closer to the physical ones for the stars analyzed by Fuhrmann, but they are even further away than the iron ionization gravities for the stars of lower gravities in Edvardsson's sample. The confrontation of the deviations of the iron ionization gravities in metal-poor stars reported here with departures from the excitation balance found in the literature, show that they are likely to be induced by the same physical mechanism(s).Comment: AAS LaTeX v4.0, 35 pages, 10 PostScript files; to appear in The Astrophysical Journa

    The Chemical Compositions of the SRd Variable Stars-- II. WY Andromedae, VW Eridani, and UW Librae

    Full text link
    Chemical compositions are derived from high-resolution spectra for three stars classed as SRd variables in the General Catalogue of Variable Stars. These stars are shown to be metal-poor supergiants: WY And with [Fe/H] = -1.0, VW Eri with [Fe/H] = -1.8, and UW Lib with [Fe/H] = -1.2. Their compositions are identical to within the measurement errors with the compositions of subdwarfs, subgiants, and less evolved giants of the same FeH. The stars are at the tip of the first giant branch or in the early stages of evolution along the asymptotic giant branch (AGB). There is no convincing evidence that these SRd variables are experiencing thermal pulsing and the third dredge-up on the AGB. The SRds appear to be the cool limit of the sequence of RV Tauri variables.Comment: 14 pages, 1 figure, 4 table

    Critical role of astroglial apolipoprotein E and liver X receptor-α expression for microglial Aβ phagocytosis

    Get PDF
    Liver X receptors (LXRs) regulate immune cell function and cholesterol metabolism, both factors that are critically involved in Alzheimer's disease (AD). To investigate the therapeutic potential of long-term LXR activation in amyloid-β (Aβ) peptide deposition in an AD model, 13-month-old, amyloid plaque-bearing APP23 mice were treated with the LXR agonist TO901317. Postmortem analysis demonstrated that TO901317 efficiently crossed the blood–brain barrier. Insoluble and soluble Aβ levels in the treated APP23 mice were reduced by 80% and 40%, respectively, compared with untreated animals. Amyloid precursor protein (APP) processing, however, was hardly changed by the compound, suggesting that the observed effects were instead mediated by Aβ disposal. Despite the profound effect on Aβ levels, spatial learning in the Morris water maze was only slightly improved by the treatment. ABCA1 (ATP-binding cassette transporter 1) and apolipoprotein E (ApoE) protein levels were increased and found to be primarily localized in astrocytes. Experiments using primary microglia demonstrated that medium derived from primary astrocytes exposed to TO901317 stimulated phagocytosis of fibrillar Aβ. Conditioned medium from TO901317-treated ApoE−/−or LXRα−/−astrocytes did not increase phagocytosis of Aβ. In APP23 mice, long-term treatment with TO901317 strongly increased the association of microglia and Aβ plaques. Short-term treatment of APP/PS1 mice with TO901317 also increased this association, which was dependent on the presence of LXRα and was accompanied by increased ApoE lipidation. Together, these data suggest that astrocytic LXRα activation and subsequent release of ApoE by astrocytes is critical for the ability of microglia to remove fibrillar Aβ in response to treatment with TO901317.</jats:p

    Spectroscopic Study of IRAS 19285+0517(PDS 100): A Rapidly Rotating Li-Rich K Giant

    Get PDF
    We report on photometry and high-resolution spectroscopy for IRAS 19285+0517. The spectral energy distribution based on visible and near-IR photometry and far-IR fluxes shows that the star is surrounded by dust at a temperature of TdT_{\rm {d}} ∼\sim 250 K. Spectral line analysis shows that the star is a K giant with a projected rotational velocity vsiniv sin i = 9 ±\pm 2 km s−1^{-1}. We determined the atmospheric parameters: TeffT_{\rm {eff}} = 4500 K, log gg = 2.5, ξt\xi_{t} = 1.5 km s−1^{-1}, and [Fe/H] = 0.14 dex. The LTE abundance analysis shows that the star is Li-rich (log ϵ\epsilon(Li) = 2.5±\pm0.15), but with essentially normal C, N, and O, and metal abundances. Spectral synthesis of molecular CN lines yields the carbon isotopic ratio 12^{12}C/13^{13}C = 9 ±\pm3, a signature of post-main sequence evolution and dredge-up on the RGB. Analysis of the Li resonance line at 6707 \AA for different ratios 6^{6}Li/7^{7}Li shows that the Li profile can be fitted best with a predicted profile for pure 7^{7}Li. Far-IR excess, large Li abundance, and rapid rotation suggest that a planet has been swallowed or, perhaps, that an instability in the RGB outer layers triggered a sudden enrichment of Li and caused mass-loss.Comment: To appear in AJ; 40 pages, 9 figure

    The 'Forbidden' Abundance of Oxygen in the Sun

    Get PDF
    We reexamine closely the solar photospheric line at 6300 A, which is attributed to a forbidden line of neutral oxygen, and is widely used in analyses of other late-type stars. We use a three-dimensional time-dependent hydrodynamical model solar atmosphere which has been tested successfully against observed granulation patterns and an array of absorption lines. We show that the solar line is a blend with a Ni I line, as previously suggested but oftentimes neglected. Thanks to accurate atomic data on the [O I] and Ni I lines we are able to derive an accurate oxygen abundance for the Sun: log epsilon (O) = 8.69 +/- 0.05 dex, a value at the lower end of the distribution of previously published abundances, but in good agreement with estimates for the local interstellar medium and hot stars in the solar neighborhood. We conclude by discussing the implication of the Ni I blend on oxygen abundances derived from the [O I] 6300 A line in disk and halo stars.Comment: 16 pages, 3 eps figures included; a more compact PostScript version created using emulateapj.sty is available from http://hebe.as.utexas.edu/recent_publi.html; to appear in ApJ

    Spectroscopic Observations of Convective Patterns in the Atmospheres of Metal-Poor Stars

    Get PDF
    Convective line asymmetries in the optical spectrum of two metal-poor stars, Gmb1830 and HD140283, are compared to those observed for solar metallicity stars. The line bisectors of the most metal-poor star, the subgiant HD140283, show a significantly larger velocity span that the expectations for a solar-metallicity star of the same spectral type and luminosity class. The enhanced line asymmetries are interpreted as the signature of the lower metal content, and therefore opacity, in the convective photospheric patterns. These findings point out the importance of three-dimensional convective velocity fields in the interpretation of the observed line asymmetries in metal-poor stars, and in particular, urge for caution when deriving isotopic ratios from observed line shapes and shifts using one-dimensional model atmospheres. The mean line bisector of the photospheric atomic lines is compared with those measured for the strong Mg I b1 and b2 features. The upper part of the bisectors are similar, and assuming they overlap, the bottom end of the stronger lines, which are formed higher in the atmosphere, goes much further to the red. This is in agreement with the expected decreasing of the convective blue-shifts in upper atmospheric layers, and compatible with the high velocity redshifts observed in the chromosphere, transition region, and corona of late-type stars.Comment: 27 pages, LaTeX; 10 Figures (14 PostScript files); to be published in The Astrophysical Journa

    Boron in Very Metal-Poor Stars

    Get PDF
    We have observed the B I 2497 A line to derive the boron abundances of two very metal-poor stars selected to help in tracing the origin and evolution of this element in the early Galaxy: BD +23 3130 and HD 84937. The observations were conducted using the Goddard High Resolution Spectrograph on board the Hubble Space Telescope. A very detailed abundance analysis via spectral synthesis has been carried out for these two stars, as well as for two other metal-poor objects with published spectra, using both Kurucz and OSMARCS model photospheres, and taking into account consistently the NLTE effects on the line formation. We have also re-assessed all published boron abundances of old disk and halo unevolved stars. Our analysis shows that the combination of high effective temperature (Teff > 6000 K, for which boron is mainly ionized) and low metallicity ([Fe/H]<-1) makes it difficult to obtain accurate estimates of boron abundances from the B I 2497 A line. This is the case of HD 84937 and three other published objects (including two stars with [Fe/H] ~ -3), for which only upper limits can be established. BD +23 3130, with [Fe/H] ~ -2.9 and logN(B)_NLTE=0.05+/-0.30, appears then as the most metal-poor star for which a firm measurement of the boron abundance presently exists. The evolution of the boron abundance with metallicity that emerges from the seven remaining stars with Teff < 6000 K and [Fe/H]<-1, for which beryllium abundances were derived using the same stellar parameters, shows a linear increase with a slope ~ 1. Furthermore, the B/Be ratio found is constant at a value ~ 20 for stars in the range -3<[Fe/H]<-1. These results point to spallation reactions of ambient protons and alpha particles with energetic particles enriched in CNO as the origin of boron and beryllium in halo stars.Comment: 38 pages, 11 Encapsulated Postscript figures (included), uses aaspp4.sty. Accepted for publication in The Astrophysical Journal. The preprint is also available at: http://www.iac.es/publicaciones/preprints.htm

    Phase diagram of an impurity in the spin-1/2 chain: two channel Kondo effect versus Curie law

    Full text link
    We consider a magnetic s=1/2 impurity in the antiferromagnetic spin chain as a function of two coupling parameters: the symmetric coupling of the impurity to two sites in the chain J1J_1 and the coupling between the two sites J2J_2. By using field theory arguments and numerical calculations we can identify all possible fixed points and classify the renormalization flow between them, which leads to a non-trivial phase diagram. Depending on the detailed choice of the two (frustrating) coupling strengths, the stable phases correspond either to a decoupled spin with Curie law behavior or to a non-Fermi liquid fixed point with a logarithmically diverging impurity susceptibility as in the two channel Kondo effect. Our results resolve a controversy about the renormalization flow.Comment: 5 pages in revtex format including 4 embedded figures (using epsf). The latest version in PDF format is available from http://fy.chalmers.se/~eggert/papers/phase-diagram.pd
    • …
    corecore