16 research outputs found

    Transcriptional response to interferon beta-1a treatment in patients with secondary progressive multiple sclerosis

    Get PDF
    Background: Interferon (IFN) beta-1a is an approved treatment for relapsing remitting multiple sclerosis (RRMS) and has been examined for use in secondary progressive multiple sclerosis (SPMS). However, no information regarding blood transcriptional changes induced by IFN treatment in SPMS patients is available. Our aim was to identify a subgroup of SPMS patients presenting a gene expression signature similar to that of RRMS patients who are clinical responders to IFN treatment. Methods: SPMS patients (n = 50, 20 IFN treated and 30 untreated) were classified using unsupervised hierarchical clustering according to IFN inducible gene expression profile identified in RRMS clinical responders to treatment. IFN inducible gene expression profile was determined by finding differentially expressed genes (DEGs) between IFN treated (n = 10) and untreated (n = 25) RRMS patients. Validation was performed on an additional independent group of 27 SPMS IFN treated patients by qRT-PCR. Results: One hundred and four DEGs, enriched by IFN signaling pathway (p = 7.4E-08), were identified in IFN treated RRMS patients. Classification of SPMS patients based on these DEGs yielded two patient groups: (1) IFN transcriptional responders (n = 12, 60 % of SPMS treated patients) showing gene-expression profile similar to IFN treated RRMS patients; (2) IFN transcriptional non-responders (n = 8) showing expression profile similar to untreated patients. IFN transcriptional responders were characterized by a more active disease, as defined by higher EDSS progression and annual relapse rate. Conclusion: Within the IFN treated SPMS population, 60 % of patients have a transcriptional response to IFN which is similar to that of RRMS patients who are IFN responders to treatment

    Cognitive function in multiple sclerosis: A long-term look on the bright side.

    No full text
    BackgroundMultiple sclerosis (MS) may lead to cognitive decline over-time.ObjectivesCharacterize cognitive performance in MS patients with long disease duration treated with disease modifying drugs (DMD) in relation to disability and determine the prevalence of cognitive resilience.MethodsCognitive and functional outcomes were assessed in 1010 DMD-treated MS patients at least 10 years from onset. Cognitive performance was categorized as high, moderate or low, and neurological disability was classified according to the Expanded Disability Status Scale (EDSS) as mild, moderate or severe. Relationship between cognitive performance and disability was examined.ResultsAfter a mean disease duration of 19.6 (SD = 7.7) years, low cognitive performance was observed in 23.7% (N = 239), moderate performance in 42.7% (N = 431), and 33.7% (N = 340) had high cognitive performance, meeting the definition of cognitively resilient patients. Within the group of patients with low cognitive performance, severe disability was observed in 50.6% (121/239), while in the group of patients with high cognitive performance, mild disability was observed in 64.4% (219/340). Differences between the group of patients with high cognitive performance and severe disability (4.5%) and the group of patients with low cognitive performance and mild disability (5.0%) were not accounted for by DMD treatment duration.ConclusionsThe majority of DMD treated MS patients did not have cognitive decline that could impair their quality of life after disease of extended duration

    Suppressed RNA-Polymerase 1 Pathway Is Associated with Benign Multiple Sclerosis

    Get PDF
    <div><p>Benign multiple sclerosis (BMS) occurs in about 15% of patients with relapsing-remitting multiple sclerosis (RRMS) that over time do not develop significant neurological disability. The molecular events associated with BMS are not clearly understood. This study sought to underlie the biological mechanisms associated with BMS. Blood samples obtained from a cohort of 31 patients with BMS and 36 patients with RRMS were applied for gene expression microarray analysis using HG-U133A-2 array (Affymetrix). Data were analyzed by Partek and pathway reconstruction was performed by Ingenuity for the most informative genes (MIGs). We identified a differing gene expression signature of 406 MIGs between BMS patients, mean±SE age 44.5±1.5 years, 24 females, 7 males, EDSS 1.9±0.2, disease duration 17.0±1.3 years, and RRMS patients, age 40.3±1.8 years, 24 females, 12 males, EDSS 3.5±0.2, disease duration 10.9±1.4 years. The signature was enriched by genes related RNA polymerase I (POL-1) transcription, general inflammatory response and activation of cell death. The most significant under-expressed pathway operating in BMS was the POL-1 pathway (p = 4.0*10<sup>−5</sup>) known while suppressed to activate P53 dependent apoptosis and to suppress NFκB induced inflammation. In accordance, of the 30 P53 target genes presented within the BMS signature, 19 had expression direction consistent with P53 activation. The transcripts within the pathway include POL-1 transcription factor 3 (RRN3, p = 4.8*10<sup>−5</sup>), POL-1 polypeptide D (POLR1D, p = 2.2*10<sup>−4</sup>), leucine-rich PPR-motif containing protein (LRPPRC p = 2.3*10<sup>−5)</sup>, followed by suppression of the downstream family of ribosomal genes like RPL3, 6,13,22 and RPS6. In accordance POL-1 transcript and release factor PTRF that terminates POL-1 transcription, was over-expressed (p = 4.4*10<sup>−3</sup>). Verification of POL-1 pathway key genes was confirmed by qRT-PCR, and RRN3 silencing resulted in significant increase in the apoptosis level of PBMC sub-populations in RRMS patients. Our findings demonstrate that suppression of POL-1 pathway induce the low disease activity of BMS.</p> </div

    Suppressed POL-1 pathway activity in BMS.

    No full text
    <p>A schematic model demonstrating the suppressed POL-1 pathway activity in BMS leading to activation of P53 dependent apoptosis. Over-expressed genes are depicted in red, down-expressed genes in green.</p

    POL-1 pathway key genes verification by qRT-PCR.

    No full text
    <p>White dots represent BMS patients (N = 20), black dots represent RRMS patients (N = 15). Data are presented as relative quantification values using ΔCT method. The house keeping gene GAPDH expression levels were used as internal control for sample normalization. Low level of the POL-1 pathway key genes POLR1D (p = 0.001), RRN3 (p = 0.03) and LRPPRC (p = 0.03) is demonstrated in BMB patients as compared with RRMS patients.</p

    Differential expression between BMS and RRMS.

    No full text
    <p>A. Volcano plot based on all microarray transcripts demonstrates global p value and Log2 fold change for each gene in differentiating between PBMC gene expression of patients with BMS and patients with RRMS. Red dots display over-expressed genes, blue dots display down-expressed genes. 406 MIGs, 171 gene over-expressed and 235 down-expressed, with p<0.01 and a log fold change between -3.1 to 3.3, are demonstrated above the black horizontal line. B. Principal component analysis (PCA) plot for microarray data showing the difference between BMS and RRMS blood gene expression. The three first principal components PC1, PC2 and PC3 are the linear combinations of the expressions of 406 MIGs plotted with the proportion of variance explained by each component, which covered 70.0% of total variance. The different ellipsoids plotted in 3-dimentional space show clear separation between BMS (violet dots, N = 31) and RRMS (green dots, BMS = 36) patients.</p

    Effect of RRN3 silencing on apoptosis in RRMS.

    No full text
    <p>A. Comparison of apoptotic level in PBMC sub-populations between BMS (white bars) and RRMS (black bars) patients. A significantly higher percent of apoptotic CD19+ B cells and CD14+ macrophages is demonstrated in BMS patients. B. Apoptosis level in PBMC sub-populations of RRMS patients before and after RRN3 silencing. Percent of apoptotic cells was measured by PI staining.</p
    corecore