2 research outputs found

    Abstractions for Software Architecture and Tools to Support Them

    No full text
    Architectures for software use rich abstractions and idioms to describe system components, the nature of interactions among the components, and the patterns that guide the composition of components into systems. These abstractions are higher-level than the elements usually supported by programming languages and tools. They capture packaging and interaction issues as well as computational functionality. Well-established (if informal) patterns guide architectural design of systems. We sketch a model for defining architectures and present an implementation of the basic level of that model. Our purpose is to support the abstractions used in practice by software designers. the implementation provides a testbed for experiments with a variety of system construction mechanisms. It distinguishes among different types of components and different ways these components can interact. It supports abstract interactions such as data flow and scheduling on the same footing as simple procedure call. It can express and check appropriate compatibility restrictions and configuration constraints. It accepts existing code as components, incurring no runtime overhead after initialization. It allows easy incorporation of specifications and associated analysis tools developed elsewhere. The implementation provides a base for extending the notation and validating the model.</p

    Biopolymer Molecular Weight Can Modulate the Wound Healing Efficacy of Multivalent Sonic Hedgehog–Hyaluronic Acid Conjugates

    No full text
    There is a clinical need for new therapeutics to improve healing of chronic impaired wounds. Thus, we investigated how biopolymer conjugation could be used to improve the wound healing performance of a key growth factor for tissue regeneration: Sonic hedgehog (Shh). We generated two multivalent Shh conjugates (mvShh) using hyaluronic acid with two different MWs, which exhibited equivalent potency and proteolytic protection <i>in vitro</i>. Using db/db diabetic mice, we showed that mvShh made with smaller HyA MW resulted in more rapid and robust neovascularization compared to mvShh made with larger MW HyA. Further, smaller mvShh conjugates resulted in faster wound resolution compared to the unconjugated Shh. This study is the first to show how the wound healing efficacy of multivalent protein–polymer conjugates is sensitive to the polymer MW, and our findings suggest that this parameter could be used to enhance the efficacy of growth factor conjugates
    corecore