6,398 research outputs found

    IRVE-II Post-Flight Trajectory Reconstruction

    Get PDF
    NASA s Inflatable Re-entry Vehicle Experiment (IRVE) II successfully demonstrated an inflatable aerodynamic decelerator after being launched aboard a sounding rocket from Wallops Flight Facility (WFF). Preliminary day of flight data compared well with pre-flight Monte Carlo analysis, and a more complete trajectory reconstruction performed with an Extended Kalman Filter (EKF) approach followed. The reconstructed trajectory and comparisons to an attitude solution provided by NASA Sounding Rocket Operations Contract (NSROC) personnel at WFF are presented. Additional comparisons are made between the reconstructed trajectory and pre and post-flight Monte Carlo trajectory predictions. Alternative observations of the trajectory are summarized which leverage flight accelerometer measurements, the pre-flight aerodynamic database, and on-board flight video. Finally, analysis of the payload separation and aeroshell deployment events are presented. The flight trajectory is reconstructed to fidelity sufficient to assess overall project objectives related to flight dynamics and overall, IRVE-II flight dynamics are in line with expectation

    Scalable solid-state quantum processor using subradiant two-atom states

    Full text link
    We propose a realization of a scalable, high-performance quantum processor whose qubits are represented by the ground and subradiant states of effective dimers formed by pairs of two-level systems coupled by resonant dipole-dipole interaction. The dimers are implanted in low-temperature solid host material at controllable nanoscale separations. The two-qubit entanglement either relies on the coherent excitation exchange between the dimers or is mediated by external laser fields.Comment: 4 pages, 3 figure

    Impact of Vehicle Flexibility on IRVE-II Flight Dynamics

    Get PDF
    The Inflatable Re-entry Vehicle Experiment II (IRVE-II) successfully launched from Wallops Flight Facility (WFF) on August 17, 2009. The primary objectives of this flight test were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for refining pre-flight design and analysis tools. Post-flight analysis including trajectory reconstruction outlined in O Keefe3 demonstrated that the IRVE-II Research Vehicle (RV) met mission objectives but also identified a few anomalies of interest to flight dynamics engineers. Most notable of these anomalies was high normal acceleration during the re-entry pressure pulse. Deflection of the inflatable aeroshell during the pressure pulse was evident in flight video and identified as the likely cause of the anomaly. This paper provides a summary of further post-flight analysis with particular attention to the impact of aeroshell flexibility on flight dynamics and the reconciliation of flight performance with pre-flight models. Independent methods for estimating the magnitude of the deflection of the aeroshell experienced on IRVE-II are discussed. The use of the results to refine models for pre-flight prediction of vehicle performance is then described

    Entanglement Swapping Chains for General Pure States

    Get PDF
    We consider entanglement swapping schemes with general (rather than maximally) entangled bipartite states of arbitary dimension shared pairwise between three or more parties in a chain. The intermediate parties perform generalised Bell measurements with the result that the two end parties end up sharing a entangled state which can be converted into maximally entangled states. We obtain an expression for the average amount of maximal entanglement concentrated in such a scheme and show that in a certain reasonably broad class of cases this scheme is provably optimal and that, in these cases, the amount of entanglement concentrated between the two ends is equal to that which could be concentrated from the weakest link in the chain.Comment: 18 pages, 5 figure

    Reinventing the Utility for DERs: A Proposal for a DSO-Centric Retail Electricity Market

    Full text link
    The increasing penetration of intermittent renewables, storage devices, and flexible loads is introducing operational challenges in distribution grids. The proper coordination and scheduling of these resources using a distributed approach is warranted, and can only be achieved through local retail markets employing transactive energy schemes. To this end, we propose a distribution-level retail market operated by a Distribution System Operator (DSO), which schedules DERs and determines the real-time distribution-level Locational Marginal Price (d-LPM). The retail market is built using a distributed Proximal Atomic Coordination (PAC) algorithm, which solves the optimal power flow model while accounting for network physics, rendering locationally and temporally varying d-LMPs. A numerical study of the market structure is carried out via simulations of the IEEE-123 node network using data from ISO-NE and Eversource in Massachusetts, US. The market performance is compared to existing retail practices, including demand response (DR) with no-export rules and net metering. The DSO-centric market increases DER utilization, permits continual market participation for DR, lowers electricity rates for customers, and eliminates the subsidies inherent to net metering programs. The resulting lower revenue stream for the DSO highlights the evolving business model of the modern utility, moving from commoditized markets towards performance-based ratemaking

    Flip Graphs of Degree-Bounded (Pseudo-)Triangulations

    Full text link
    We study flip graphs of triangulations whose maximum vertex degree is bounded by a constant kk. In particular, we consider triangulations of sets of nn points in convex position in the plane and prove that their flip graph is connected if and only if k>6k > 6; the diameter of the flip graph is O(n2)O(n^2). We also show that, for general point sets, flip graphs of pointed pseudo-triangulations can be disconnected for k9k \leq 9, and flip graphs of triangulations can be disconnected for any kk. Additionally, we consider a relaxed version of the original problem. We allow the violation of the degree bound kk by a small constant. Any two triangulations with maximum degree at most kk of a convex point set are connected in the flip graph by a path of length O(nlogn)O(n \log n), where every intermediate triangulation has maximum degree at most k+4k+4.Comment: 13 pages, 12 figures, acknowledgments update

    Affinity flow fractionation of cells via transient interactions with asymmetric molecular patterns

    Get PDF
    Flow fractionation of cells using physical fields to achieve lateral displacement finds wide applications, but its extension to surface molecule-specific separation requires labeling. Here we demonstrate affinity flow fractionation (AFF) where weak, short-range interactions with asymmetric molecular patterns laterally displace cells in a continuous, label-free process. We show that AFF can directly draw neutrophils out of a continuously flowing stream of blood with an unprecedented 400,000-fold depletion of red blood cells, with the sorted cells being highly viable, unactivated, and functionally intact. The lack of background erythrocytes enabled the use of AFF for direct enumeration of neutrophils by a downstream detector, which could distinguish the activation state of neutrophils in blood. The compatibility of AFF with capillary microfluidics and its ability to directly separate cells with high purity and minimal sample preparation will facilitate the design of simple and portable devices for point-of-care diagnostics and quick, cost-effective laboratory analysis

    Flight Performance of the Inflatable Reentry Vehicle Experiment II

    Get PDF
    The Inflatable Reentry Vehicle Experiment II launched August 17, 2009, from NASA Wallops Flight Facility. The three mission objectives were to demonstrate inflation and re-entry survivability, assess the thermal and drag performance of the reentry vehicle, and to collect flight data for comparison with analysis and design techniques used in vehicle development. The flight was a complete success, with the re-entry vehicle separating cleanly from the launcher, inflating as planned, and demonstrating stable flight through reentry and descent while on-board systems telemetered video and flight performance data to the ground

    SN 2013ab : A normal type IIP supernova in NGC 5669

    Get PDF
    We present densely-sampled ultraviolet/optical photometric and low-resolution optical spectroscopic observations of the type IIP supernova 2013ab in the nearby (\sim24 Mpc) galaxy NGC 5669, from 2 to 190d after explosion. Continuous photometric observations, with the cadence of typically a day to one week, were acquired with the 1-2m class telescopes in the LCOGT network, ARIES telescopes in India and various other telescopes around the globe. The light curve and spectra suggest that the SN is a normal type IIP event with a plateau duration of 80 \sim80 days with mid plateau absolute visual magnitude of -16.7, although with a steeper decline during the plateau (0.92 mag 100 d1 ^{-1} in V V band) relative to other archetypal SNe of similar brightness. The velocity profile of SN 2013ab shows striking resemblance with those of SNe 1999em and 2012aw. Following the Rabinak & Waxman (2011) prescription, the initial temperature evolution of the SN emission allows us to estimate the progenitor radius to be \sim 800 R_{\odot}, indicating that the SN originated from a red supergiant star. The distance to the SN host galaxy is estimated to be 24.3 Mpc from expanding photosphere method (EPM). From our observations, we estimate that 0.064 M_{\odot} of 56^{56}Ni was synthesized in the explosion. General relativistic, radiation hydrodynamical modeling of the SN infers an explosion energy of 0.35×1051 0.35\times10^{51} erg, a progenitor mass (at the time of explosion) of 9 \sim9 M_{\odot} and an initial radius of 600 \sim600 R_{\odot}.Comment: 22 pages, 18 figures, 5 tables. Accepted for publication in MNRA

    Assessing the irradiance levels of phototherapy devices in Jos, north central, Nigeria

    Get PDF
    Background: Neonatal jaundice (NNJ) remains a major cause of neonatal morbidity and mortality in Nigeria with significant contribution to the global figures. Effective phototherapy can reduce the complications associated with NNJ. The effectiveness of a phototherapy device (PD) depends mainly on the emitted irradiance of the device. We, therefore, assessed the irradiance of the PDs in Jos, North Central Nigeria in order to determine the effectiveness of the devices and to highlight the need for routine assessment of irradiance levels of PDs in low-middle income settings.Methods: This was a cross- sectional study involving 14 hospitals with a total of 38 functional PDs comprising of 25 (65.8%) locally fabricated, eight (21.0%) light- emitting diode (LED) and five (13.2%) conventional patented devices. The irradiance was measured using the BiliBlanket® light meter II.Results: The irradiance of the PDs ranged from 2 to 102μW/cm2/nm with a median value of 10.6 (IQR 6-18μW/cm2/nm).   Sixteen devices (42.1%) had a suboptimal irradiance (<10μW/cm2/nm); while only five (13.2%) provided irradiance at the intensive level (≥30μW/cm2/nm). The mean distance between the babies and phototherapy lights was 35.1±12.7cm (range 15-70cm).Conclusions: A significant proportion of the PDs in Jos delivered suboptimal irradiance which could reduce the effectiveness of the phototherapy. The irradiance of PDs needs to be assessed regularly and measures should be instituted to improve the irradiance to the optimum level in order to reduce the burden of kernicterus
    corecore