4 research outputs found

    Modular Riboswitch Toolsets for Synthetic Genetic Control in Diverse Bacterial Species

    No full text
    Ligand-dependent control of gene expression is essential for gene functional analysis, target validation, protein production, and metabolic engineering. However, the expression tools currently available are difficult to transfer between species and exhibit limited mechanistic diversity. Here we demonstrate how the modular architecture of purine riboswitches can be exploited to develop orthogonal and chimeric switches that are transferable across diverse bacterial species, modulating either transcription or translation, to provide tunable activation or repression of target gene expression, in response to synthetic non-natural effector molecules. Our novel riboswitch–ligand pairings are shown to regulate physiologically important genes required for bacterial motility in Escherichia coli and cell morphology in Bacillus subtilis. These findings are relevant for future gene function studies and antimicrobial target validation, while providing new modular and orthogonal regulatory components for deployment in synthetic biology regimes

    Heterologous Production and Purification of a Functional Chloroform Reductive Dehalogenase

    No full text
    Reductive dehalogenases (RDases) are key enzymes involved in the respiratory process of anaerobic organohalide respiring bacteria (ORB). Heterologous expression of respiratory RDases is desirable for structural and functional studies; however, there are few reports of successful expression of these enzymes. <i>Dehalobacter</i> sp. strain UNSWDHB is an ORB, whose preferred electron acceptor is chloroform. This study describes efforts to express recombinant reductive dehalogenase (TmrA), derived from UNSW DHB, using the heterologous hosts <i>Escherichia coli</i> and <i>Bacillus megaterium</i>. Here, we report the recombinant expression of soluble and functional TmrA, using <i>B. megaterium</i> as an expression host under a xylose-inducible promoter. Successful incorporation of iron–sulfur clusters and a corrinoid cofactor was demonstrated using UV–vis spectroscopic analyses. <i>In vitro</i> dehalogenation of chloroform using purified recombinant TmrA was demonstrated. This is the first known report of heterologous expression and purification of a respiratory reductive dehalogenase from an obligate organohalide respiring bacterium

    P450-Catalyzed Regio- and Diastereoselective Steroid Hydroxylation: Efficient Directed Evolution Enabled by Mutability Landscaping

    No full text
    Cytochrome P450 monooxygenases play a crucial role in the biosynthesis of many natural products and in the human metabolism of numerous pharmaceuticals. This has inspired synthetic organic and medicinal chemists to exploit them as catalysts in regio- and stereoselective CH-activating oxidation of structurally simple and complex organic compounds such as steroids. However, levels of regio- and stereoselectivity as well as activity are not routinely high enough for real applications. Protein engineering using rational design or directed evolution has helped in many respects, but simultaneous engineering of multiple catalytic traits such as activity, regioselectivity, and stereoselectivity, while overcoming trade-offs and diminishing returns, remains a challenge. Here we show that the exploitation of information derived from mutability landscapes and molecular dynamics simulations for rationally designing iterative saturation mutagenesis constitutes a viable directed evolution strategy. This combined approach is illustrated by the evolution of P450<sub>BM3</sub> mutants which enable nearly perfect regio- and diastereoselective hydroxylation of five different steroids specifically at the C16-position with unusually high activity, while avoiding activity–selectivity trade-offs as well as keeping the screening effort relatively low. The C16 alcohols are of practical interest as components of biologically active glucocorticoids

    P450-Catalyzed Regio- and Diastereoselective Steroid Hydroxylation: Efficient Directed Evolution Enabled by Mutability Landscaping

    No full text
    Cytochrome P450 monooxygenases play a crucial role in the biosynthesis of many natural products and in the human metabolism of numerous pharmaceuticals. This has inspired synthetic organic and medicinal chemists to exploit them as catalysts in regio- and stereoselective CH-activating oxidation of structurally simple and complex organic compounds such as steroids. However, levels of regio- and stereoselectivity as well as activity are not routinely high enough for real applications. Protein engineering using rational design or directed evolution has helped in many respects, but simultaneous engineering of multiple catalytic traits such as activity, regioselectivity, and stereoselectivity, while overcoming trade-offs and diminishing returns, remains a challenge. Here we show that the exploitation of information derived from mutability landscapes and molecular dynamics simulations for rationally designing iterative saturation mutagenesis constitutes a viable directed evolution strategy. This combined approach is illustrated by the evolution of P450<sub>BM3</sub> mutants which enable nearly perfect regio- and diastereoselective hydroxylation of five different steroids specifically at the C16-position with unusually high activity, while avoiding activity–selectivity trade-offs as well as keeping the screening effort relatively low. The C16 alcohols are of practical interest as components of biologically active glucocorticoids
    corecore