41 research outputs found
Microarcsecond Radio Imaging using Earth Orbit Synthesis
The observed interstellar scintillation pattern of an intra-day variable
radio source is influenced by its source structure. If the velocity of the
interstellar medium responsible for the scattering is comparable to the
earth's, the vector sum of these allows an observer to probe the scintillation
pattern of a source in two dimensions and, in turn, to probe two-dimensional
source structure on scales comparable to the angular scale of the scintillation
pattern, typically as for weak scattering. We review the theory on
the extraction of an ``image'' from the scintillation properties of a source,
and show how earth's orbital motion changes a source's observed scintillation
properties during the course of a year. The imaging process, which we call
Earth Orbit Synthesis, requires measurements of the statistical properties of
the scintillations at epochs spread throughout the course of a year.Comment: ApJ in press. 25 pages, 7 fig
Optical Spectra of Candidate Southern Hemisphere International Celestial Reference Frame (ICRF) Radio Sources
We present the results of spectroscopic observations of the optical counterparts of 47 southern radio sources from the candidate International Celestial Reference Catalogue as part of a very long baseline interferometry (VLBI) program to strengthen the celestial reference frame, especially in the south. We made the observations with the 3.58 m European Southern Observatory New Technology Telescope. We obtained redshifts for 30 quasars and one radio galaxy, with a further seven objects being probable BL Lac objects with featureless spectra. Of the remainder, four were clear misidentifications with Galactic stars and five had low signal-to-noise spectra and could not be classified. These results, in combination with new VLBI data of the radio sources with redshifts more than 2, add significantly to the existing data needed to refine the distribution of source proper motions over the celestial sphere
Scintillation in the Circinus Galaxy water megamasers
We present observations of the 22 GHz water vapor megamasers in the Circinus
galaxy made with the Tidbinbilla 70m telescope. These observations confirm the
rapid variability seen earlier by Greenhill et al (1997). We show that this
rapid variability can be explained by interstellar scintillation, based on what
is now known of the interstellar scintillation seen in a significant number of
flat spectrum AGN. The observed variability cannot be fully described by a
simple model of either weak or diffractive scintillation.Comment: 10 pages, 5 figures. AJ accepte
Angular Broadening of Intraday Variable AGN. II. Interstellar and Intergalactic Scattering
We analyze a sample of 58 multi-wavelength, Very Long Baseline Array
observations of active galactic nuclei (AGN) to determine their scattering
properties. Approximately 75% of the sample consists of AGN that exhibit
centimeter-wavelength intraday variability (interstellar scintillation) while
the other 25% do not show intraday variability. We find that interstellar
scattering is measurable for most of these AGN, and the typical broadening
diameter is 2 mas at 1 GHz. We find that the scintillating AGN are typically at
lower Galactic latitudes than the non-scintillating AGN, consistent with the
scenario that intraday variability is a propagation effect from the Galactic
interstellar medium. The magnitude of the inferred interstellar broadening
measured toward the scintillating AGN, when scaled to higher frequencies, is
comparable to the diameters inferred from analyses of the light curves for the
more well-known intraday variable sources. However, we find no difference in
the amount of scattering measured toward the scintillating versus
non-scintillating AGN. A consistent picture is one in which the scintillation
results from localized regions ("clumps") distributed throughout the Galactic
disk, but which individually make little contribution to the angular
broadening. Of the 58 AGN observed, 37 (64%) have measured redshifts. At best,
a marginal trend is found for scintillating (non-scintillating) AGN to have
smaller (larger) angular diameters at higher redshifts. We also use our
observations to try to constrain the possibility of intergalactic scattering.
While broadly consistent with the scenario of a highly turbulent intergalactic
medium, our observations do not place significant constraints on its
properties.Comment: 13 pages, 4 figures; AASTeX format; ApJ in pres
A survey of X-ray emission from 100 kpc radio jets
We have completed a Chandra snapshot survey of 54 radio jets that are
extended on arcsec scales. These are associated with flat spectrum radio
quasars spanning a redshift range z=0.3 to 2.1. X-ray emission is detected from
the jet of approximately 60% of the sample objects. We assume minimum energy
and apply conditions consistent with the original Felten-Morrison calculations
in order to estimate the Lorentz factors and the apparent Doppler factors. This
allows estimates of the enthalpy fluxes, which turn out to be comparable to the
radiative luminosities.Comment: Conference Proceedings IAU Symposium No. 313, Extragalactic jets from
every angle, pp. 219-224, 4 figure
Rapid interstellar scintillation of PKS B1257-326: two-station pattern time delays and constraints on scattering and microarcsecond source structure
We report measurements of time delays of up to 8 minutes in the centimeter
wavelength variability patterns of the intra-hour scintillating quasar PKS
1257-326 as observed between the VLA and the ATCA on three separate epochs.
These time delays confirm interstellar scintillation as the mechanism
responsible for the rapid variability, at the same time effectively ruling out
the coexistence of intrinsic intra-hour variability in this source. The time
delays are combined with measurements of the annual variation in variability
timescale exhibited by this source to determine the characteristic length scale
and anisotropy of the quasar's intensity scintillation pattern, as well as
attempting to fit for the bulk velocity of the scattering plasma responsible
for the scintillation. We find evidence for anisotropic scattering and highly
elongated scintillation patterns at both 4.9 and 8.5 GHz, with an axial ratio >
10:1, extended in a northwest direction on the sky. The characteristic scale of
the scintillation pattern along its minor axis is well determined, but the high
anisotropy leads to degenerate solutions for the scintillation velocity. The
decorrelation of the pattern over the baseline gives an estimate of the major
axis length scale of the scintillation pattern. We derive an upper limit on the
distance to the scattering plasma of no more than 10 pc.Comment: 27 pages, 6 figures, accepted for publication in Ap
Finding Extremely Compact Sources Using the ASKAP VAST Survey
VLBI observations of intraday variable (IDV) quasars found in the MASIV (Micro-Arcsecond Scintillation-Induced Variability) 5 GHz VLA Survey of 500 flat-spectrum sources in the northern sky have shown that these sources are extremely compact, often unresolved, on milliarcsecond scales, and more core-dominated than their non-IDV counterparts. VAST: an ASKAP Survey for Variables and Slow Transients, proposes to observe 10,000 square degrees of southern sky daily for 2 years in the VAST-Wide survey component. This is expected to reveal of order 30,000 compact sources brighter than 10 mJy showing refractive interstellar scintillation (the cause of centimeter-wavelength IDV) at the survey frequency of about 1.4 GHz. Many of these sources may be suitable astrometric calibrators for VLBI at higher frequencies
The first year of Antarctic VLBI observations
We are undertaking a series of geodetic VLBI observations between the Syowa Station 11-m antenna in Antarctica, and the 26-m antennas in Hobart Tasmania and Hartebeesthoek South Africa. These observations are the beginning of our campaign to monitor the motion and stability of the Antarctic plate. We describe here the results of the first year\u27s observations made during the southern summer and winter of 1998. Two mutually incompatible recording systems, K4 and S2, are used. The Mitaka FX Correlator was used to correlate these data. By using software called CALC3/MSOLV, the mean position of the antenna\u27s geodetic reference point was found to be X=1766194.152±0.006m, Y=1460410.923±0.005m and Z=- 5932273.329±0.015m at the epoch of 1998.9 in the International Terrestrial Reference Frame 2000 (ITRF2000) system. From a comparison with measurements made with other space geodetic techniques we estimate that our results have typical uncertainties of no more than 2 to 3cm in each coordinate
Interstellar Scintillation of the Polarized Flux Density in Quasar, PKS 0405-385
The remarkable rapid variations in radio flux density and polarization of the
quasar PKS 0405-385 observed in 1996 are subject to a correlation analysis,
from which characteristic time scales and amplitudes are derived. The
variations are interpreted as interstellar scintillations. The cm wavelength
observations are in the weak scintillation regime for which models for the
various auto- and cross-correlations of the Stokes parameters are derived and
fitted to the observations. These are well modelled by interstellar
scintillation (ISS) of a 30 by 22 micro-as source, with about 180 degree
rotation of the polarization angle along its long dimension. This success in
explaining the remarkable intra-day variations (IDV)in polarization confirms
that ISS gives rise to the IDV in this quasar. However, the fit requires the
scintillations to be occurring much closer to the Earth than expected according
to the standard model for the ionized interstellar medium (IISM). Scattering at
distances in the range 3-30 parsec are required to explain the observations.
The associated source model has a peak brightness temperature near 2.0
10^{13}K, which is about twenty-five times smaller than previously derived for
this source. This reduces the implied Doppler factor in the relativistic jet,
presumed responsible to 10-20, high but just compatible with cm wavelength VLBI
estimates for the Doppler factors in Active Galactic Nuclei (AGNs).Comment: 43 pages 15 figures, accepted for ApJ Dec 200