23 research outputs found

    A critical role for Kalirin in NGF signaling through TrkA

    Full text link
    Kalirin is a multidomain guanine nucleotide exchange factor (GEF) that activates Rho proteins, inducing cytoskeletal rearrangement in neurons. Although much is known about the effects of Kalirin on Rho GTPases and neuronal morphology, little is known about the association of Kalirin with the receptor/signaling systems that affect neuronal morphology. Our experiments demonstrate that Kalirin binds to and colocalizes with the TrkA neurotrophin receptor in neurons. In PC12 cells, inhibition of Kalirin expression using antisense RNA decreased nerve growth factor (NGF)-induced TrkA autophosphorylation and process extension. Kalirin overexpression potentiated neurotrophin-stimulated TrkA autophosphorylation and neurite outgrowth in PC12 cells at a low concentration of NGF. Furthermore, elevated Kalirin expression resulted in catalytic activation of TrkA, as demonstrated by in vitro kinase assays and increased NGF-stimulated cellular activation of Rac, Mek, and CREB. Domain mapping demonstrated that the N-terminal Kalirin pleckstrin homology domain mediates the interaction with TrkA. The effects of Kalirin on TrkA provide a molecular basis for the requirement of Kalirin in process extension from PC12 cells and for previously observed effects on axonal extension and dendritic maintenance. The interaction of TrkA with the pleckstrin homology domain of Kalirin may be one example of a general mechanism whereby receptor/Rho GEF pairings play an important role in receptor tyrosine kinase activation and signal transduction

    Critical Role for Kalirin in Nerve Growth Factor Signaling through TrkA

    No full text
    Kalirin is a multidomain guanine nucleotide exchange factor (GEF) that activates Rho proteins, inducing cytoskeletal rearrangement in neurons. Although much is known about the effects of Kalirin on Rho GTPases and neuronal morphology, little is known about the association of Kalirin with the receptor/signaling systems that affect neuronal morphology. Our experiments demonstrate that Kalirin binds to and colocalizes with the TrkA neurotrophin receptor in neurons. In PC12 cells, inhibition of Kalirin expression using antisense RNA decreased nerve growth factor (NGF)-induced TrkA autophosphorylation and process extension. Kalirin overexpression potentiated neurotrophin-stimulated TrkA autophosphorylation and neurite outgrowth in PC12 cells at a low concentration of NGF. Furthermore, elevated Kalirin expression resulted in catalytic activation of TrkA, as demonstrated by in vitro kinase assays and increased NGF-stimulated cellular activation of Rac, Mek, and CREB. Domain mapping demonstrated that the N-terminal Kalirin pleckstrin homology domain mediates the interaction with TrkA. The effects of Kalirin on TrkA provide a molecular basis for the requirement of Kalirin in process extension from PC12 cells and for previously observed effects on axonal extension and dendritic maintenance. The interaction of TrkA with the pleckstrin homology domain of Kalirin may be one example of a general mechanism whereby receptor/Rho GEF pairings play an important role in receptor tyrosine kinase activation and signal transduction

    RD-Connect: An Integrated Platform Connecting Databases, Registries, Biobanks and Clinical Bioinformatics for Rare Disease Research

    No full text
    International audienceResearch into rare diseases is typically fragmented by data type and disease. Individual efforts often have poor interoperability and do not systematically connect data across clinical phenotype, genomic data, biomaterial availability, and research/trial data sets. Such data must be linked at both an individual-patient and whole-cohort level to enable researchers to gain a complete view of their disease and patient population of interest. Data access and authorization procedures are required to allow researchers in multiple institutions to securely compare results and gain new insights. Funded by the European Union's Seventh Framework Programme under the International Rare Diseases Research Consortium (IRDiRC), RD-Connect is a global infrastructure project initiated in November 2012 that links genomic data with registries, biobanks, and clinical bioinformatics tools to produce a central research resource for rare diseases
    corecore