6 research outputs found

    A snow and glacier hydrological model for large catchments – case study for the Naryn River, central Asia

    Get PDF
    In this paper we implement a degree day snowmelt and glacier melt model in the Dynamic fluxEs and ConnectIvity for Predictions of HydRology (DECIPHeR) model. The purpose is to develop a hydrological model that can be applied to large glaciated and snow-fed catchments yet is computationally efficient enough to include model uncertainty in streamflow predictions. The model is evaluated by simulating monthly discharge at six gauging stations in the Naryn River catchment (57 833 km2) in central Asia over the period 1951 to a variable end date between 1980 and 1995 depending on the availability of discharge observations. The spatial distribution of simulated snow cover is validated against MODIS weekly snow extent for the years 2001–2007. Discharge is calibrated by selecting parameter sets using Latin hypercube sampling and assessing the model performance using six evaluation metrics. The model shows good performance in simulating monthly discharge for the calibration period (NSE is 0.74&lt;NSE&lt;0.87) and validation period (0.7&lt;NSE&lt;0.9), where the range of NSE values represents the 5th–95th percentile prediction limits across the gauging stations. The exception is the Uch-Kurgan station, which exhibits a reduction in model performance during the validation period attributed to commissioning of the Toktogul reservoir in 1975 which impacted the observations. The model reproduces the spatial extent in seasonal snow cover well when evaluated against MODIS snow extent; 86 % of the snow extent is captured (mean 2001–2007) for the median ensemble member of the best 0.5 % calibration simulations. We establish the present-day contributions of glacier melt, snowmelt and rainfall to the total annual runoff and the timing of when these components dominate river flow. The model predicts well the observed increase in discharge during the spring (April–May) associated with the onset of snow melting and peak discharge during the summer (June, July and August) associated with glacier melting. Snow melting is the largest component of the annual runoff (89 %), followed by the rainfall (9 %) and the glacier melt component (2 %), where the values refer to the 50th percentile estimates at the catchment outlet gauging station Uch-Kurgan. In August, glacier melting can contribute up to 66 % of the total runoff at the highly glacierized Naryn headwater sub-catchment. The glaciated area predicted by the best 0.5 % calibration simulations overlaps the Landsat observations for the late 1990s and mid-2000s. Despite good predictions for discharge, the model produces a large range of estimates for the glaciated area (680–1196 km2) (5th–95th percentile limits) at the end of the simulation period. To constrain these estimates further, additional observations such as glacier mass balance, snow depth or snow extent should be used directly to constrain model simulations.</p

    Evaluating targeted heuristics for vulnerability assessment in flood impact model chains

    Get PDF
    In flood risk management, the choice of vulnerability functions has a remarkable impact on the overall uncertainty of modelling flood damage. The spatial transferability of empirical vulnerability functions is limited, leading to the need for computation and validation of region-specific vulnerability functions. In data-scarce regions however, this option is not feasible. In contrast, the physical processes of flood impact model chains can be developed in these regions because of the availability of global datasets. Here we evaluated the implementation of a synthetic vulnerability function into a flood impact model. The function bases on expert heuristics on a targeted sample of representative buildings (targeted heuristics). We applied the vulnerability function in a meso-scale river basin and evaluated the new function by comparing the resulting flood damage with the damage computed by other approaches, (1) an ensemble of vulnerability functions available from the literature, (2) an individual vulnerability function calibrated with region-specific data, and (3) the vulnerability function used in flood risk management by the Swiss government. The results show that targeted heuristics can be a valuable alternative for developing flood impact models in regions without any data or only few data on flood damage

    Identification of glacial meltwater runoff in a karstic environment and its implication for present and future water availability

    Get PDF
    Glaciers all over the world are expected to continue to retreat due to the global warming throughout the 21st century. Consequently, future seasonal water availability might become scarce once glacier areas have declined below a certain threshold affecting future water management strategies. Particular attention should be paid to glaciers located in a karstic environment, as parts of the meltwater can be drained by underlying karst systems, making it difficult to assess water availability. In this study tracer experiments, karst modeling and glacier melt modeling are combined in order to identify flow paths in a high alpine, glacierized, karstic environment (Glacier de la Plaine Morte, Switzerland) and to investigate current and predict future downstream water availability. Flow paths through the karst underground were determined with natural and fluorescent tracers. Subsequently, geologic information and the findings from tracer experiments were assembled in a karst model. Finally, glacier melt projections driven with a climate scenario were performed to discuss future water availability in the area surrounding the glacier. The results suggest that during late summer glacier meltwater is rapidly drained through well-developed channels at the glacier bottom to the north of the glacier, while during low flow season meltwater enters into the karst and is drained to the south. Climate change projections with the glacier melt model reveal that by the end of the century glacier melt will be significantly reduced in the summer, jeopardizing water availability in glacier-fed karst springs
    corecore