6 research outputs found

    Functionally-relevant mutations in dimorphic element alleles.

    No full text
    <p>(A) Dimorphic element allele phylogeny, including the outgroup species <i>D. simulans</i> (D. sim.). Alignment of sequences encompassing the (B) “D” mutation, (C) “E” mutation, (D) “F” mutation, (E) and the “L” mutation. Black background color for the E mutation indicates the 1 base pair overlap for the derived deletion and the adjacent DSX binding site. (F–J) Comparison of GFP-reporter activity in female transgenic pupae at 85 hAPF, represented as the % of the <i>D. melanogaster</i> Concestor element female A6 mean ± SEM. Red upward and downward arrow respectively indicate segments with increased and decreased regulatory activity. Yellow arrowhead indicates expanded regulatory activity. Regulatory activities differing from the Concestor element due to the following derived mutations: (G) D mutation; (H) E mutation; (I) F mutation; and (J) L mutation. (K) Summary for the female A6 regulatory activities for modifications to the E mutation region. The Concestor element sequence is provided and the introduced modifications indicated by red bases. (L) Gel shift assays for annealed oligonucleotide probes containing the wild type (Concestor element, lanes 1–7), E mutation (lanes 8–14), and mutant (Dsx1 KO, lanes 15–19) Dsx1 binding site. The binding site sequences are included with mutant bases in red. For the Concestor element and E mutation probes, binding reactions used increasing amounts of the DSX protein (from left to right: 0 ng, 8 ng, 16 ng, 31 ng, 63 ng, 125 ng, 250 ng, and 500 ng). For the Dsx1 KO probe, binding reactions used the following amounts of protein (from left to right: 0 ng, 8 ng, 31 ng, 125 ng, 500 ng). Blue and red arrowheads point to the respective locations of single or pair of DSX monomers bound to the probe.</p

    Abdomen pigmentation correlates with the regulatory activity of dimorphic element alleles.

    No full text
    <p>(A) The A5 and A6 segment dorsal tergites of <i>D. melanogaster</i> males are fully pigmented, (B–H) whereas the female A5 and A6 tergite pigmentation varies from “Light” to a male-like “Dark” phenotype. (A′–H′) GFP-reporter transgene activity was measured in transgenic pupae at 85 hours after puparium formation (hAPF) and activity measurements were represented as the % of the <i>D. melanogaster Canton<sup>S</sup></i> allele female A6 mean ± SEM. (A′) The regulatory activity of a male <i>Canton<sup>S</sup></i> pupae. The regulatory activity of alleles from the following locations were measured: (B′) Oaxaca, Mexico (called Light 2), (C′) Crete, Greece, (D′) Kuala Lumpur, Malaysia (called Light 1), (E′) Mumbai, India, (F′) Kisangani, Africa, (G′) Uganda, Africa (called Dark 1), and (H′) Bogota, Columbia (called Dark 2).</p

    Population level differences in Bab paralog expression.

    No full text
    <p>(A–C) The expression of Bab1 in the dorsal abdomens of female pupae at 85 hAPF. (A) Light 1 females display uniform Bab1 expression throughout segments A2-A6, whereas expression is reduced in the A5 and A6 segments of (B) Dark 1 and (C) Dark 2 females. (D and E) Expression of Bab1 in the female genitalia (g) and analia (a) at 29 hAPF. (F–H) Bab2 expression in the dorsal abdomen of female pupae is at 85 hAPF. Bab2 expression is (F) uniform throughout the A2–A6 segments of Light 1 females, (G) reduced in the A5 and A6 segments of Dark 1 females, and (H) uniform throughout the A2–A6 of Dark 2 females. (I and J) Expression of Bab2 in the female genitalia (g) and analia (a) is at 29 hAPF. Red arrowheads indicate segments where expression is reduced compared to more anterior segments, whereas yellow arrowheads indicate the segments where Bab2 is expressed at a higher level than that observed for Bab1 for Dark 2 females.</p

    Pigmentation gene network model and the evolution of an ancestral CRE regulatory logic.

    No full text
    <p>(A–C) Schematic of the hierarchical structure of the <i>D. melanogaster</i> pigmentation gene network. Direct regulation is represented as solid connections and dashed connections represent connections where regulation has not been shown to be direct. Activation and repression are respectively indicated by the arrowhead and nail-head shapes. This network includes an (A) upper level of patterning genes, including <i>Abd-B</i> and <i>dsx</i> respectively of the body plan and sex-determination pathways, (B) a mid-level tier that integrates patterning inputs, (C) and a lower level that includes pigmentation genes whose encoded products function in pigment metabolism. Although <i>Abd-B</i> directly regulates the pigmentation gene <i>yellow</i>, sexually dimorphic expression of the <i>yellow</i> and <i>tan</i> genes results from the sexually dimorphic output of the <i>bab</i> locus that acts to repress <i>tan</i> and <i>yellow</i> expression in females. (D) A model for the evolution of diverse dimorphic element regulatory activities. The common ancestor of <i>D. melanogaster</i> populations and related species possessed a dimorphic element with both DSX and ABD-B regulatory linkages and that drove expression in the female A6–A8 segments. This ancestral regulatory logic was recurrently modified to increase the levels and expand the segmental domain of activity, or to decrease and contract activity. These changes occurred amidst the preservation of the core ABD-B and DSX regulatory linkages, perhaps though the loss (TF 3) and/or gain (TF 4) of other transcription factor linkages.</p

    <i>bab locus</i> allelic variation underlies phenotypic variation.

    No full text
    <p>(A) The A5 and A6 tergite phenotype for F1 females were intermediate to those from the parental Light 1 and Dark 1 stocks. F2 females had pigmentation phenotypes that were (B) “Light”, (C) “Intermediate”, or (D) “Dark”. (E–P) Complementation tests for population stock <i>bab</i> loci with a <i>bab</i> locus null allele. (E) The Light 1 stock complemented the <i>bab</i> locus null allele with regards to abdomen tergite pigmentation, whereas the (F) Dark 1, and (G) Dark 2 stocks failed to complement the null allele in segments A5 and A6 but complemented the null allele for the A3 and A4 segments. Light 1, Dark 1, and Dark 2 stocks complemented the <i>bab</i> locus null allele for (I–K) posterior abdomen phenotypes and (M–O) for the development of the leg tarsal segments. Females with a homozygous <i>bab</i> locus null genotype displayed (F) ectopic pigmentation on segments A3 through A6, and (L) lacked bristles on the A6 and A7 ventral sternites and the genitalia (g) had altered bristles and morphology. (P) Individuals with a homozygous <i>bab</i> locus null genotype had tarsal segments 5, 4, and 3 fused, and altered bristle morphology on tarsal segments 2 and 3. Red arrowheads and black arrows respectively indicate the location abnormal posterior abdomen and tarsus features.</p

    Dimorphic element alleles diverged from an ancestral state.

    No full text
    <p>(A–E) To scale representations of various dimorphic elements, including the (A, Concestor) inferred allele for the most recent common ancestor of extant <i>D. melanogaster</i> populations, and alleles from populations with Light (B, Light 1; C, Light 2) and Dark (D, Dark1; E, Dark 2) female pigmentation phenotypes. Dark blue and yellow rectangles respectively represent the fourteen ABD-B and two DSX binding sites. Thin and thick red lines respectively represent derived point and indel mutations. (A′–E′ and A″–E″) Comparison of GFP-reporter gene activities in female transgenic pupae was at 85 hAPF. Activity measurements are represented as the % of the <i>D. melanogaster</i> Concestor element female (A′–E′) A6 mean ± SEM and (A″–E″) A7 mean ± SEM. Red upward and downward arrows respectively indicate segments with increased and decreased regulatory activity. Yellow arrowhead indicates a region of expanded regulatory activity. Lowercase letter “g” indicates expression in the genitalia.</p
    corecore