141 research outputs found

    Human Rights in a Pluralist, Unequal Globe: Contributions of Jesuit Universities

    Get PDF

    The Evolution of Galaxies and Their Environment

    Get PDF
    The Third Teton Summer School on Astrophysics discussed the formation of galaxies, star formation in galaxies, galaxies and quasars at high red shift, and the intergalactic and intercluster medium and cooling flows. Observation and theoretical research on these topics was presented at the meeting and summaries of the contributed papers are included in this volume

    Physical conditions in photodissociation regions: Application to galactic nuclei

    Get PDF
    Infrared and sub-millimeter observations are used in a simple procedure to determine average physical properties of the neutral interstellar medium in Galactic photodissociation regions as well as in ensembles of clouds which exist in the nuclei of luminous infrared galaxies. The relevant observations include the Infrared Astronomy Satellite (IRAS) infrared continuum measurements, infrared spectroscopy of the fine-structure lines of SiII 35 microns, OI 63 microns, and CII 158 microns, and the 2.6 mm CO (J=1-0) rotational transition. The diagnostic capabilities of the OI 145 microns line is also addressed. Researchers attribute these emission lines as well as the continuum to the atomic/molecular photodissociation region on the surfaces of molecular clouds which are illuminated by strong ultraviolet fields. They use the theoretical photodissociation region models of Tielens and Hollenbach (1985, Ap. J., 291, 722) to construct simple diagrams which utilize line ratios and line to continuum ratios to determine the average gas density n, the average incident far-ultraviolet flux G sub o, and the temperature of the atomic gas T

    Spitzer spectral line mapping of supernova remnants: I. Basic data and principal component analysis

    Get PDF
    We report the results of spectroscopic mapping observations carried out toward small (1 x 1 arcmin) regions within the supernova remnants W44, W28, IC443, and 3C391 using the Infrared Spectrograph of the Spitzer Space Telescope. These observations, covering the 5.2 - 37 micron spectral region, have led to the detection of a total of 15 fine structure transitions of Ne+, Ne++, Si+, P+, S, S++, Cl+, Fe+, and Fe++; the S(0) - S(7) pure rotational lines of molecular hydrogen; and the R(3) and R(4) transitions of hydrogen deuteride. In addition to these 25 spectral lines, the 6.2, 7.7, 8.6, 11.3 and 12.6 micron PAH emission bands were also observed. Most of the detected line transitions have proven strong enough to map in several sources, providing a comprehensive picture of the relative distribution of the various line emissions observable in the Spitzer/IRS bandpass. A principal component analysis of the spectral line maps reveals that the observed emission lines fall into five distinct groups, each of which may exhibit a distinct spatial distribution: (1) lines of S and H2 (J > 2); (2) the H2 S(0) line; (3) lines of ions with appearance potentials less than 13.6 eV; (4) lines of ions with appearance potentials greater than 13.6 eV, not including S++; (5) lines of S++. Lines of group (1) likely originate in molecular material subject to a slow, nondissociative shock that is driven by the overpressure within the supernova remnant, and lines in groups (3) - (5) are associated primarily with dissociative shock fronts with a range of (larger) shock velocities. The H2 S(0) line shows a low-density diffuse emission component, and - in some sources - a shock-excited component.Comment: 43 pages, including 21 figures. Accepted for publication in Ap

    SWAS and Arecibo observations of H2O and OH in a diffuse cloud along the line-of-sight to W51

    Get PDF
    Observations of W51 with the Submillimeter Wave Astronomy Satellite (SWAS) have yielded the first detection of water vapor in a diffuse molecular cloud. The water vapor lies in a foreground cloud that gives rise to an absorption feature at an LSR velocity of 6 km/s. The inferred H2O column density is 2.5E+13 cm-2. Observations with the Arecibo radio telescope of hydroxyl molecules at ten positions in W51 imply an OH column density of 8E+13 cm-2 in the same diffuse cloud. The observed H2O/OH ratio of ~ 0.3 is significantly larger than an upper limit derived previously from ultraviolet observations of the similar diffuse molecular cloud lying in front of HD 154368. The observed variation in H2O/OH likely points to the presence in one or both of these clouds of a warm (T > 400) gas component in which neutral-neutral reactions are important sources of OH and/or H2O.Comment: 15 pages (AASTeX) including 4 (eps) figures. To appear in the Astrophysical Journa

    Planar H\u3csub\u3e2\u3c/sub\u3eO Masers in Star-Forming Regions

    Get PDF
    The planar geometry of shocked material is the key property in enabling the high brightness temperatures of H20 masars in star-forming regions. We solve for the brightness temperature, the beaming angle, and the maser spot size for thin, saturated planar masers under the assumption that the velocity change across the maser due to ordered motions is small compared with the thermal or microturbulent line width. For a given set of physical parameters, the brightness temperature is essentially fully determined by the length of the velocity-coherent region in the shocked plane along the line of sight. The geometry in the transverse direction in the plane is largely irrelevant; a saturated planar maser can generally be modeled as a disk, and a disk maser observed in the plane appears as bright as an equivalent filamentary maser whose length equals the disk diameter. Of the two mdependent dimensions perpendicular to the filament axis, one is equal to the disk thickness and the other is somewhat smaller than the size of the disk\u27s unsaturated core. In astrophysical shocks, we show that the last two dimensions are approximately equal, so that the equivalent filament is roughly cylindrical. The ratio of the equivalent filament length to its width, or the effective aspect ratio, is determined by the disk diameter and the pumping scheme. We find effective aspect ratios (~ 5-50) that are in agreement with values previously inferred from observed brightness temperatures

    Radiative Transfer in Astronomical Masers. III. Filamentary Masers

    Get PDF
    This paper, the last in a series, presents the complete solution of a filamentary maser. The contribution of rays emanating from the filament sidewall is essential for the solution self-consistency during saturation. We develop an integral equation to calculate this contribution, devise an iteration scheme to solve it, and perform the first two iterations. The solution provides complete expressions for the distributions of intensity and flux across the source as functions of position and direction with regard to the axis. One consequence of radiation beaming, somewhat surprising at first, is that the filament appears smaller when viewed off-axis, at angles exceeding the cap\u27s opening angle. From the detailed results we devise the number distribution of brightness temperatures in a large sample of randomly oriented filaments with an arbitrary distribution of lengths. A thorough comparison of the filamentary and spherical geometries is presented with possible observational tests to differentiate between the two. The effects of external radiation on the maser structure and intensity are also studied. Explicit expressions for the brightness and flux in this situation are provided, including detailed analysis of two interacting filaments and a foreground slab amplifying a background filament. We propose that the two giant bursts of H20 maser emission observed in W49 and Orion were the result of such interactions. Rapid time variations reported for the Orion burst may best be explained with amplification of a background maser filament by a foreground maser slab, initially unsaturated

    Photoionization of Galactic Halo Gas by Old Supernova Remnants

    Full text link
    We present new calculations on the contribution from cooling hot gas to the photoionization of warm ionized gas in the Galaxy. We show that hot gas in cooling supernova remnants (SNRs) is an important source of photoionization, particularly for gas in the halo. We find that in many regions at high latitude this source is adequate to account for the observed ionization so there is no need to find ways to transport stellar photons from the disk. The flux from cooling SNRs sets a floor on the ionization along any line of sight. Our model flux is also shown to be consistent with the diffuse soft X-ray background and with soft X-ray observations of external galaxies. We consider the ionization of the clouds observed towards the halo star HD 93521, for which there are no O stars close to the line of sight. We show that the observed ionization can be explained successfully by our model EUV/soft X-ray flux from cooling hot gas. In particular, we can match the H alpha intensity, the S++/S+ ratio, and the C+* column. From observations of the ratios of columns of C+* and either S+ or H0, we are able to estimate the thermal pressure in the clouds. The slow clouds require high (~10^4 cm^-3 K) thermal pressures to match the N(C+*)/N(S+) ratio. Additional heating sources are required for the slow clouds to maintain their ~7000 K temperatures at these pressures, as found by Reynolds, Hausen & Tufte (1999).Comment: AASTeX 5.01; 34 pages, 2 figures; submitted to Astrophysical Journa
    corecore