1,084 research outputs found

    Identification of the formation of resonant tones in compressible cavity flows

    Get PDF
    Identification of the fluid dynamic mechanisms responsible for the formation of resonant tones in a cavity flow is challenging. Time-frequency non-linear analysis techniques were applied to the post-processing of pressure signals recorded on the floor of a rectangular cavity at a transonic Mach number. The results obtained, confirmed that the resonant peaks in the spectrum were produced by the interaction of a carrier frequency (and its harmonics) and a modulating frequency. High-order spectral analysis, based on the instantaneous wavelet bi-coherence method, was able to identify, at individual samples in the pressure–time signal, that the interaction between the fundamental frequency and the amplitude modulation frequency was responsible for the creation of the Rossier–Heller tones. The same technique was also able to correlate the mode switching phenomenon, as well as the deactivation of the resonant tones during the temporal evolution of the signal

    Wavelet analysis of complex geometry transonic cavity flows

    Get PDF
    The aero-acoustic analysis of a weapon bay of an Unmanned Combat Air Vehicle (UCAV) was predicted using Computational Fluid Dynamics (CFD) methods. Along the reference geometry, consisting in the installation of the Boeing M219 modified type cavity in the Boeing UCAV1303 airframe, two additional configurations, developed modifying the leading and trailing edge geometries of the bay, were tested. Pressure signals inside the cavity were post-processed using Joint Time Frequency Analysis (JTFA) techniques, consisting in a combination of frequency domain and time-frequency domain techniques based respectively on the Fourier and wavelet transform. Results showed an intermittency nature of the modes present in the spectra as well as a continuous change, during the temporal evolution of the signal, of the dominant mode. Also were recorded, using second order wavelet spectral moments, non-linear phenomena between the main modes like phase coupling

    Langevin Equation for the Density of a System of Interacting Langevin Processes

    Full text link
    We present a simple derivation of the stochastic equation obeyed by the density function for a system of Langevin processes interacting via a pairwise potential. The resulting equation is considerably different from the phenomenological equations usually used to describe the dynamics of non conserved (Model A) and conserved (Model B) particle systems. The major feature is that the spatial white noise for this system appears not additively but multiplicatively. This simply expresses the fact that the density cannot fluctuate in regions devoid of particles. The steady state for the density function may however still be recovered formally as a functional integral over the coursed grained free energy of the system as in Models A and B.Comment: 6 pages, latex, no figure

    Medical student fitness to practise committees at UK medical schools

    Get PDF
    Abstract Background The aim was to explore the structures for managing student fitness to practise hearings in medical schools in the UK. We surveyed by email the named fitness to practise leads of all full members of the UK Medical Schools Council with a medical undergraduate programme. We asked whether student fitness to practise cases were considered by a committee/panel dedicated to medicine, or by one which also considered other undergraduate health and social care students. Findings All 31 medical schools responded. 19 medical schools had a fitness to practise committee dealing with medical students only. Three had a committee that dealt with students of medicine and dentistry. One had a committee that dealt with students of medicine and veterinary medicine. Eight had a committee that dealt with students of medicine and two or more other programmes, such as dentistry, nursing, midwifery, physiotherapy, dietetics, social work, pharmacy, psychology, audiology, speech therapy, operating department practice, veterinary medicine and education. Conclusion All 31 UK medical schools with undergraduate programmes have a fitness to practise committee to deal with students whose behaviour has given rise to concern about their fitness to practise. The variation in governance structures for student fitness to practise committees/panels can in part be explained by variations in University structures and the extent to which Universities co-manage undergraduate medicine with other courses.</p

    The statistics of critical points of Gaussian fields on large-dimensional spaces

    Full text link
    We calculate the average number of critical points of a Gaussian field on a high-dimensional space as a function of their energy and their index. Our results give a complete picture of the organization of critical points and are of relevance to glassy and disordered systems, and to landscape scenarios coming from the anthropic approach to string theory.Comment: 5 page

    Geotechnical Lessons Learned From Earthquakes

    Get PDF
    Geotechnical earthquake engineering is an experience-driven discipline. Field observations are particularly important because it is difficult to replicate in the laboratory, the characteristics and response of soil deposits built by nature over thousands of years. Further, much of the data generated by a major earthquake is perishable, so it is critical that it is collected soon after the event occurs. Detailed mapping and surveying of damaged and undamaged areas provides the data for the well-documented case histories that drive the development of many of the design procedures used by geotechnical engineers. Thus, documenting the key lessons learned from major earthquake events around the world contributes significantly to advancing research and practice in geotechnical earthquake engineering. This is one of the primary objectives of the Geotechnical Extreme Events Reconnaissance (GEER) Association. Some of GEER’s findings from recent earthquakes are described in this paper. In particular, the use of advanced reconnaissance techniques is highlighted, as well as specific technical findings from the 1999 Kocaeli, Turkey earthquake, the 2007 Pisco, Peru earthquake, the 2010 Haiti earthquake, and the 2010 Maule, Chile earthquake

    Measuring overlaps in mesoscopic spin glasses via conductance fluctuations

    Get PDF
    We consider the electonic transport in a mesoscopic metallic spin glasses. We show that the distribution of overlaps between spin configurations can be inferred from the reduction of the conductance fluctuations by the magnetic impurities. Using this property, we propose new experimental protocols to probe spin glasses directly through their overlaps

    Slow Logarithmic Decay of Magnetization in the Zero Temperature Dynamics of an Ising Spin Chain: Analogy to Granular Compaction

    Full text link
    We study the zero temperature coarsening dynamics in an Ising chain in presence of a dynamically induced field that favors locally the `-' phase compared to the `+' phase. At late times, while the `+' domains still coarsen as t1/2t^{1/2}, the `-' domains coarsen slightly faster as t1/2log(t)t^{1/2}\log (t). As a result, at late times, the magnetization decays slowly as, m(t)=1+const./log(t)m(t)=-1 +{\rm const.}/{\log (t)}. We establish this behavior both analytically within an independent interval approximation (IIA) and numerically. In the zero volume fraction limit of the `+' phase, we argue that the IIA becomes asymptotically exact. Our model can be alternately viewed as a simple Ising model for granular compaction. At late times in our model, the system decays into a fully compact state (where all spins are `-') in a slow logarithmic manner 1/log(t)\sim 1/{\log (t)}, a fact that has been observed in recent experiments on granular systems.Comment: 4 pages Revtex, 3 eps figures, supersedes cond-mat/000221

    Extremal driving as a mechanism for generating long-term memory

    Full text link
    It is argued that systems whose elements are renewed according to an extremal criterion can generally be expected to exhibit long-term memory. This is verified for the minimal extremally driven model, which is first defined and then solved for all system sizes N\geq2 and times t\geq0, yielding exact expressions for the persistence R(t)=[1+t/(N-1)]^{-1} and the two-time correlation function C(t_{\rm w}+t,t_{\rm w})=(1-1/N)(N+t_{\rm w})/(N+t_{\rm w}+t-1). The existence of long-term memory is inferred from the scaling of C(t_{\rm w}+t,t_{\rm w})\sim f(t/t_{\rm w}), denoting {\em aging}. Finally, we suggest ways of investigating the robustness of this mechanism when competing processes are present.Comment: 5 pages, no figures; requires IOP style files. To appear as a J. Phys. A. lette
    corecore