9,927 research outputs found

    Improved phase gate reliability in systems with neutral Ising anyons

    Full text link
    Recent proposals using heterostructures of superconducting and either topologically insulating or semiconducting layers have been put forth as possible platforms for topological quantum computation. These systems are predicted to contain Ising anyons and share the feature of having only neutral edge excitations. In this note, we show that these proposals can be combined with the recently proposed "sack geometry" for implementation of a phase gate in order to conduct robust universal quantum computation. In addition, we propose a general method for adjusting edge tunneling rates in such systems, which is necessary for the control of interferometric devices. The error rate for the phase gate in neutral Ising systems is parametrically smaller than for a similar geometry in which the edge modes carry charge: it goes as T3T^3 rather than TT at low temperatures. At zero temperature, the phase variance becomes constant at long times rather than carrying a logarithmic divergence.Comment: 5 pages, 1 figur

    Exotic circuit elements from zero-modes in hybrid superconductor/quantum Hall systems

    Get PDF
    Heterostructures formed by quantum Hall systems and superconductors have recently been shown to support widely coveted Majorana fermion zero-modes and still more exotic `parafermionic' generalizations. Here we establish that probing such zero-modes using quantum Hall edge states yields non-local transport signatures that pave the way towards a variety of novel circuit elements. In particular, we demonstrate quite generally that at low energies the zero-modes convert chirally moving quasiparticles into oppositely charged quasiholes propagating in the same direction---that is, they swap the sign of the chiral edge currents. One may then construct new and potentially useful circuit elements using this `perfect Andreev conversion' process, including superconducting current and voltage mirrors as well as transistors for fractional charge currents. Characterization of these circuit elements should provide striking evidence of the zero-mode physics.Comment: 7 pages, 5 figures, v2: references adde

    Exotic non-Abelian anyons from conventional fractional quantum Hall states

    Get PDF
    Non-Abelian anyons--particles whose exchange noncommutatively transforms a system's quantum state--are widely sought for the exotic fundamental physics they harbor as well as for quantum computing applications. There now exist numerous blueprints for stabilizing the simplest type of non-Abelian anyon, defects binding Majorana modes, by judiciously interfacing widely available materials. Following this line of attack, we introduce a device fabricated from conventional fractional quantum Hall states and s-wave superconductors that supports exotic non-Abelian anyons that bind `parafermions', which can be viewed as fractionalized Majorana fermions. We show that these modes can be experimentally identified (and distinguished from Majoranas) using Josephson measurements. We also provide a practical recipe for braiding parafermions and show that they give rise to non-Abelian statistics. Interestingly, braiding in our setup produces a richer set of topologically protected qubit operations when compared to the Majorana case. As a byproduct, we establish a new, experimentally realistic Majorana platform in weakly spin-orbit-coupled materials such as GaAs.Comment: 12 pages, 4 figure

    A practical phase gate for producing Bell violations in Majorana wires

    Full text link
    The Gottesman-Knill theorem holds that operations from the Clifford group, when combined with preparation and detection of qubit states in the computational basis, are insufficient for universal quantum computation. Indeed, any measurement results in such a system could be reproduced within a local hidden variable theory, so that there is no need for a quantum mechanical explanation and therefore no possibility of quantum speedup. Unfortunately, Clifford operations are precisely the ones available through braiding and measurement in systems supporting non-Abelian Majorana zero modes, which are otherwise an excellent candidate for topologically protected quantum computation. In order to move beyond the classically simulable subspace, an additional phase gate is required. This phase gate allows the system to violate the Bell-like CHSH inequality that would constrain a local hidden variable theory. In this article, we both demonstrate the procedure for measuring Bell violations in Majorana systems and introduce a new type of phase gate for the already existing semiconductor-based Majorana wire systems. We conclude with an experimentally feasible schematic combining the two, which should potentially lead to the demonstration of Bell violation in a Majorana experiment in the near future. Our work also naturally leads to a well-defined platform for universal fault-tolerant quantum computation using Majorana zero modes, which we describe.Comment: 11 pages, 13 figures; Title and references update

    The New Colorado Corporation Act

    Get PDF

    Structural and functional studies of protein complexes

    Get PDF
    • …
    corecore