5 research outputs found

    Bipolar Spectroelectrochemistry

    No full text
    Bipolar electrochemistry is receiving growing attention in the last years, not only because it is an important tool for studying electron transfer processes, but also because it is really fruitful in the development of new analytical sensors. Bipolar electrodes show promising applications as a direct analytical tool since oxidation and reduction reactions take place simultaneously on different parts of a single conductor. There are several electrochemical devices that provide information about electron transfer between two immiscible electrolyte solutions, but to the best of our knowledge, this is the first time that a bipolar device is able to record two spectroelectrochemical responses concomitantly at two different compartments. It allows deconvolving the electrochemical signal into two different optical signals related to the electron transfer processes occurring at two compartments that are electrically in contact. The combination of an electrochemical and two spectroscopic responses is indeed very useful, providing essential advantages in the study of a huge variety of systems. The study of three different electrochemical systems, such as reversible redox couples, carbon nanotubes, and conducting polymers has allowed us to validate the new cell and to demonstrate the capabilities of this technique to obtain valuable time-resolved information related to the electron transfer processes

    Simultaneous UV–Visible Absorption and Raman Spectroelectrochemistry

    No full text
    The development of a new device based on the use of UV–vis bare optical fibers in a long optical path length configuration and the measurement of the Raman response in normal arrangement allows us to perform UV–vis and Raman spectroelectrochemistry simultaneously in a single experiment. To the best of our knowledge, this is the first time that a spectroelectrochemistry device is able to record both spectroscopic responses at the same time, which further expands the versatility of spectroelectrochemistry techniques and enables us to obtain much more high-quality information in a single experiment. Three different electrochemical systems, such as ferrocyanide, dopamine, and 3,4-ethylenedioxythiophene, have been studied to validate the cell and to demonstrate the performance of the device. Processes that take place in solution can be properly distinguished from processes that occur on the electrode surface during the electrochemical experiment, providing a whole picture of the reactions taking place at the electrode/solution interface. Therefore, this device allows us to study a larger number of complex electrochemical processes from different points of view taking into account not only the UV–vis spectral changes in the solution adjacent to the electrode but also the Raman signal at any location. Furthermore, complementary information, which could not be unambiguously extracted without considering together the two spectroscopic signals and the electrochemical response, is obtained in a novel way

    Study of Adenine and Guanine Oxidation Mechanism by Surface-Enhanced Raman Spectroelectrochemistry

    No full text
    Metal nanoparticles are systems largely employed in surface-enhanced Raman spectroscopy (SERS). In particular, gold nanoparticles are one of the best substrates used in this field. In this work, the optimal conditions for gold nanoparticles electrodeposition on single-walled carbon nanotubes electrodes have been established to obtain the best SERS response. Using this substrate and analyzing the changes of in situ Raman spectra obtained at different potentials, we have been able to explain simultaneously the oxidation mechanism of purine bases, differentiating the oxidation intermediates and their orientation during the different oxidation steps. Adenine orientation hardly changes during the whole oxidation; the molecule maintains a parallel configuration and only shows a slightly tilted orientation after the first oxidation step. On the other hand, guanine orientation changes completely during its oxidation. Initially, guanine is perpendicular respect to gold nanoparticles, changing its orientation after the first oxidation process when the molecule shows a slightly tilted orientation, and it finishes parallel respect to the electrode surface after the second oxidation step

    Janus Electrochemistry: Asymmetric Functionalization in One Step

    No full text
    Janus structures represent an overwhelming member of materials with adaptable chemical and physical properties. Development of new synthesis routes has allowed the fabrication of Janus architectures with specific characteristics depending on the final applications. In the case of the membranes, the improvement of wet routes has been limited to the capillary effect, in which the solution can gradually penetrate through the membrane, avoiding a double modification different at each face of the membrane. In this work, we propose a new electrochemical methodology to circumvent the capillary limitation and obtain a double electrochemical functionalization in only one step in a controlled way. This innovative methodology has been validated using a tridirectional spectroelectrochemistry setup. Moreover, the information provided by this optical arrangement should be especially useful for the study of the different processes (ion transfer, assisted ion transfer, and electron transfer) that can take place at liquid/liquid interfaces. Janus electrochemistry allows us to modify the two faces of a free-standing single-walled carbon nanotube electrode in a single experiment. As proof of concept, the free-standing films have been functionalized with two different conducting polymers, polyaniline and poly­(3-hexylthiophene), in one electrochemical experiment. According to the obtained results, this new electrochemical methodology will open new gates for the design and functionalization of Janus materials

    In-situ Evidence of the Redox-State Dependence of Photoluminescence in Graphene Quantum Dots

    No full text
    Changes in the optical properties of graphene quantum dots (GQD) during electrochemical reduction and oxidation were investigated by photoluminescence (PL) spectroelectrochemistry, which provided direct in situ evidence of the dependence of GQD luminescence on their redox state. We demonstrated that GQD PL intensity was enhanced upon reduction (quantum yield increased from 0.44 to 0.55) and substantially bleached during oxidation (quantum yield ∼0.12). Moreover, PL emission blue/red-shifted upon GQD reduction/oxidation, rendering information about electronic transitions involved in the redox processes, namely, the π → π* and the <i>n</i> → π* transitions between energy levels of the aromatic sp<sup>2</sup> domains and the functional groups, respectively. PL intensity changes during GQD reduction/oxidation resulted from a variation in structural changes in GQD as a result of charge injection, as corroborated by in situ Raman spectroelectrochemistry
    corecore