27 research outputs found
The four-jointed gene is required in the Drosophila eye for ommatidial polarity specification
Non-canonical Wnt signalling regulates scarring in biliary disease via the planar cell polarity receptors
The number of patients diagnosed with chronic bile duct disease is increasing and in most cases these diseases result in chronic ductular scarring, necessitating liver transplantation. The formation of ductular scaring affects liver function; however, scar-generating portal fibroblasts also provide important instructive signals to promote the proliferation and differentiation of biliary epithelial cells. Therefore, understanding whether we can reduce scar formation while maintaining a pro-regenerative microenvironment will be essential in developing treatments for biliary disease. Here, we describe how regenerating biliary epithelial cells express Wnt-Planar Cell Polarity signalling components following bile duct injury and promote the formation of ductular scars by upregulating pro-fibrogenic cytokines and positively regulating collagen-deposition. Inhibiting the production of Wnt-ligands reduces the amount of scar formed around the bile duct, without reducing the development of the pro-regenerative microenvironment required for ductular regeneration, demonstrating that scarring and regeneration can be uncoupled in adult biliary disease and regeneration
Effects of elevated CO2 concentrations on the vegetation and microbial populations at a terrestrial CO2 vent at Laacher See, Germany
CO2 capture and geological storage offers an option for reducing man-made greenhouse gas emissions. But one major concern related to geological CO2 storage is the possibility of leakage from the reservoir and subsequent effects on the environment, which cannot completely be excluded. This study aims at investigating the environmental impact of CO2 release from reservoirs into near surface terrestrial environments. To understand the effect of CO2 leakage on such an ecosystem, detailed knowledge on the abundance and diversity of plants and microorganisms is essential. Therefore, an ecosystem study has been conducted within the Network of Excellence “CO2GeoNet” on a natural CO2 vent at the Laacher See, Germany. Near surface CO2 conditions and CO2 fluxes of the venting area were described by means of conventional soil gas measurement equipment, and brought up the difference between the CO2 anomalies and their surroundings. A comparison of the soil columns between control sites and the centre of the venting area showed a small but significant change in the soil pH below 10 cm. The botanical survey revealed vegetation changes which, like the investigation of important soil microbial communities, showed significant differences between the CO2-rich sites (up to 90% and more of soil gas), medium CO2 sites (∼20%), and control locations with background CO2 concentrations. The ecosystem appears to be adapted to the different conditions through species substitution or adaptation, showing a shift towards anaerobic and acidotolerant to acidophilic species under elevated CO2 concentrations. It is hoped that the final outcome of this ongoing study will be the identification of possible botanical and microbial indicators, whose presence or absence provides easily detectable evidence for leakage of CO2 from deep reservoirs into near surface terrestrial ecosystems
The four-jointed gene is required in the Drosophila eye for ommatidial polarity specification
AbstractBackground: The Drosophila eye is composed of about 800 ommatidia, each of which becomes dorsoventrally polarised in a process requiring signalling through the Notch, JAK/STAT and Wingless pathways. These three pathways are thought to act by setting up a gradient of a signalling molecule (or molecules) often referred to as the ‘second signal’. Thus far, no candidate for a second signal has been identified.Results: The four-jointed locus encodes a type II transmembrane protein that is expressed in a dorsoventral gradient in the developing eye disc. We have analysed the function and regulation of four-jointed during eye patterning. Loss-of-function clones or ectopic expression of four-jointed resulted in strong non-autonomous defects in ommatidial polarity on the dorsoventral axis. Ectopic expression experiments indicated that localised four-jointed expression was required at the time during development when ommatidial polarity was being determined. In contrast, complete removal of four-jointed function resulted in only a mild ommatidial polarity defect. Finally, we found that four-jointed expression was regulated by the Notch, JAK/STAT and Wingless pathways, consistent with it mediating their effects on ommatidial polarity.Conclusions: The clonal phenotypes, time of requirement and regulation of four-jointed are consistent with it acting in ommatidial polarity determination as a second signal downstream of Notch, JAK/STAT and Wingless. Interestingly, it appears to act redundantly with unknown factors in this process, providing an explanation for the previous failure to identify a second signal
Recommended from our members
Polarity Determination in the Drosophila Eye: A Novel Role for Unpaired and JAK/STAT Signaling
The JAK/STAT signaling pathway is required for many processes including cytokine signaling, hematopoiesis, gliagenesis, and Drosophila segmentation. In this report we present evidence demonstrating that the JAK/STAT pathway is also central to the establishment of planar polarity during Drosophila eye development. We show that a localized source of the pathway ligand, Unpaired, is present at the midline of the developing eye, which is capable of activating the JAK/STAT pathway over long distances. A gradient of JAK/STAT activity across the DV axis of the eye regulates ommatidial polarity via an unidentified second signal. Additionally, localized Unpaired influences the position of the equator via repression of mirror.Version of Recor
Multiple Roles for four-jointed in Planar Polarity and Limb Patterning
AbstractInsect cuticles have been a model system for the study of planar polarity for many years and a number of genes required for this process have been identified. These genes organise the polarised arrangement of hairs on the legs, wings, thorax, and abdomen of adult Drosophila. It has previously been shown that four-jointed is involved in planar polarity decisions in the eye as well as proximal distal leg and wing development. We now present evidence that four-jointed is expressed in a gradient through the developing wing and show that it is required for planar polarity determination in both the wing and the abdomen. Clones of cells either lacking or ectopically expressing four-jointed cause both autonomous and nonautonomous repolarisation of hairs in these tissues. We propose that the inferred four-jointed expression gradient is important for planar polarity establishment and that local inversions of the gradient by the clones are the probable cause of the observed polarity phenotypes. In addition we observe defects in wing vein development. The subtle phenotypes of mutant flies, and the diverse patterning processes in which it is involved, suggest that four-jointed may act as a modifier of the activity of multiple other signalling factors
Nuclear signaling by Rac and Rho GTPases is required in the establishment of epithelial planar polarity in the Drosophila eye
AbstractBackground: The small GTPases Rac and Rho act as cellular switches in many important biological processes. In the fruit fly Drosophila, RhoA participates in the establishment of planar polarity, a process mediated by the receptor Frizzled (Fz). Thus far, analysis of Rac in this process has not been possible because of the absence of mutant Rac alleles. Here, we have investigated the role of Rac and Rho in establishing the polarity of ommatidia in the Drosophila eye.Results: By expressing a dominant negative or a constitutively activated form of Rac1, we interfered specifically with Rac signaling and disrupted ommatidial polarity. The resulting defects were similar to the loss/gain-of-function phenotypes typical of tissue-polarity genes. Through genetic interaction and rescue experiments involving a polarity-specific, loss-of-function dishevelled (dsh) allele, we found that Rac1 acts downstream of Dsh in the Fz signaling pathway, but upstream of, or in parallel to, RhoA. Rac signaled to the nucleus through the Jun N-terminal kinase (JNK) cascade in this process. By generating point mutations in the effector loop of RhoA, we found that RhoA also signals to the nucleus during the establishment of ommatidial polarity. Nevertheless, Rac and RhoA activated transcription of distinct target genes.Conclusions: Rac is specifically required downstream of Dsh in the Fz pathway. It functions upstream or in parallel to RhoA and both signal to the nucleus, through distinct effectors, to establish planar polarity in the Drosophila eye
Dishevelled Activates JNK and Discriminates between JNK Pathways in Planar Polarity and wingless Signaling
AbstractFrizzled family proteins have been described as receptors of Wnt signaling molecules. In Drosophila, the two known Frizzled proteins are associated with distinct developmental processes. Genesis of epithelial planar polarity requires Frizzled, whereas Dfz2 affects morphogenesis by wingless-mediated signaling. Dishevelled is required in both signaling pathways. Here, we use genetic and overexpression assays to show that Dishevelled activates JNK cascades. Rescue analysis reveals different protein domain requirements in Dishevelled for the two pathways; the C-terminal DEP domain is essential to rescue planar polarity defects and induce JNK signaling. Furthermore, the planar polarity–specific dsh1 allele is mutated in the DEP domain. Our results indicate that different Wnt/Fz signals activate distinct intracellular pathways, and Dishevelled discriminates among them by distinct domain interactions
