256 research outputs found
Predicting Cognitive Decline in Nondemented Elders Using Baseline Metrics of AD Pathologies, Cerebrovascular Disease, and Neurodegeneration
BACKGROUND AND OBJECTIVES: Dementia is a growing socio-economic challenge that requires early intervention. Identifying biomarkers that reliably predict clinical progression early in the disease process would better aid selection of individuals for future trial participation. Here we compared the ability of baseline, single time-point biomarkers (CSF amyloid 1-42, CSF ptau-181, white matter hyperintensities (WMH), cerebral microbleeds (CMB), whole-brain volume, and hippocampal volume) to predict decline in cognitively normal individuals who later converted to mild cognitive impairment (MCI) (CNtoMCI), and those with MCI who later converted to an Alzheimer's disease (AD) diagnosis (MCItoAD). METHODS: Standardised baseline biomarker data from ADNI2/Go, and longitudinal diagnostic data (including ADNI3), were used. Cox regression models assessed biomarkers in relation to time to change in clinical diagnosis using all follow-up timepoints available. Models were fit for biomarkers univariately, and together in a multivariable model. Hazard Ratios (HR) were compared to evaluate biomarkers. Analyses were performed separately in CNtoMCI and MCItoAD groups. RESULTS: For CNtoMCI (n = 189), there was strong evidence that higher WMH volume (individual model: HR 1.79, p = .002; fully-adjusted model: HR 1.98, p = .003), and lower hippocampal volume (individual: HR 0.54, p = .001; fully-adjusted: HR 0.40, p < .001) were associated with conversion to MCI individually and independently. For MCItoAD (n = 345), lower hippocampal (individual model: HR 0.45, p < .001; fully-adjusted model: HR 0.55, p < .001) and whole-brain volume (individual: HR 0.31, p < .001; fully-adjusted: HR 0.48, p = .02), increased CSF ptau (individual: HR 1.88, p < .001; fully-adjusted: HR 1.61, p < .001), and lower CSF amyloid (individual: HR 0.37, p < .001, fully-adjusted: HR 0.62, p = .008) were most strongly associated with conversion to AD individually and independently. DISCUSSION: Lower hippocampal volume was a consistent predictor of clinical conversion to MCI and AD. CSF and brain volume biomarkers were predictive of conversion to AD from MCI, while WMH were predictive of conversion to MCI from cognitively normal. The predictive ability of WMH in the CNtoMCI group may be interpreted as some being on a different pathological pathway, such as vascular cognitive impairment
Evaluation of novel data-driven metrics of amyloid β deposition for longitudinal PET studies
PURPOSE: Positron emission tomography (PET) provides in vivo quantification of amyloid-β (Aβ) pathology. Established methods for assessing Aβ burden can be affected by physiological and technical factors. Novel, data-driven metrics have been developed to account for these sources of variability. We aimed to evaluate the performance of four data-driven amyloid PET metrics against conventional techniques, using a common set of criteria. METHODS: Three cohorts were used for evaluation: Insight 46 (N=464, [18F]florbetapir), AIBL (N=277, [18F]flutemetamol), and an independent test-retest data (N=10, [18F]flutemetamol). Established metrics of amyloid tracer uptake included the Centiloid (CL) and where dynamic data was available, the non-displaceable binding potential (BPND). The four data driven metrics computed were the amyloid load (Aβ load), the Aβ PET pathology accumulation index (Aβ index), the Centiloid derived from non-negative matrix factorisation (CLNMF), and the amyloid pattern similarity score (AMPSS). These metrics were evaluated using reliability and repeatability in test-retest data, associations with BPND and CL, and sample size estimates to detect a 25% slowing in Aβ accumulation. RESULTS: All metrics showed good reliability. Aβ load, Aβ index and CLNMF were strong associated with the BPND. The associations with CL suggests that cross-sectional measures of CLNMF, Aβ index and Aβ load are robust across studies. Sample size estimates for secondary prevention trial scenarios were the lowest for CLNMF and Aβ load compared to the CL. CONCLUSION: Among the novel data-driven metrics evaluated, the Aβ load, the Aβ index and the CLNMF can provide comparable performance to more established quantification methods of Aβ PET tracer uptake. The CLNMF and Aβ load could offer a more precise alternative to CL, although further studies in larger cohorts should be conducted
Predicting Cognitive Decline in Older Adults Using Baseline Metrics of AD Pathologies, Cerebrovascular Disease, and Neurodegeneration
Background and ObjectivesDementia is a growing socioeconomic challenge that requires early intervention. Identifying biomarkers that reliably predict clinical progression early in the disease process would better aid selection of individuals for future trial participation. Here, we compared the ability of baseline, single time-point biomarkers (CSF amyloid 1-42, CSF ptau-181, white matter hyperintensities (WMH), cerebral microbleeds, whole-brain volume, and hippocampal volume) to predict decline in cognitively normal individuals who later converted to mild cognitive impairment (MCI) (CNtoMCI) and those with MCI who later converted to an Alzheimer disease (AD) diagnosis (MCItoAD).MethodsStandardized baseline biomarker data from AD Neuroimaging Initiative 2 (ADNI2)/GO and longitudinal diagnostic data (including ADNI3) were used. Cox regression models assessed biomarkers in relation to time to change in clinical diagnosis using all follow-up time points available. Models were fit for biomarkers univariately and together in a multivariable model. Hazard ratios (HRs) were compared to evaluate biomarkers. Analyses were performed separately in CNtoMCI and MCItoAD groups.ResultsFor CNtoMCI (n = 189), there was strong evidence that higher WMH volume (individual model: HR 1.79, p = 0.002; fully adjusted model: HR 1.98, p = 0.003) and lower hippocampal volume (individual: HR 0.54, p = 0.001; fully adjusted: HR 0.40, p < 0.001) were associated with conversion to MCI individually and independently. For MCItoAD (n = 345), lower hippocampal (individual model: HR 0.45, p < 0.001; fully adjusted model: HR 0.55, p < 0.001) and whole-brain volume (individual: HR 0.31, p < 0.001; fully adjusted: HR 0.48, p = 0.02), increased CSF ptau (individual: HR 1.88, p < 0.001; fully adjusted: HR 1.61, p < 0.001), and lower CSF amyloid (individual: HR 0.37, p < 0.001; fully adjusted: HR 0.62, p = 0.008) were most strongly associated with conversion to AD individually and independently.DiscussionLower hippocampal volume was a consistent predictor of clinical conversion to MCI and AD. CSF and brain volume biomarkers were predictive of conversion to AD from MCI, whereas WMH were predictive of conversion to MCI from cognitively normal. The predictive ability of WMH in the CNtoMCI group may be interpreted as some being on a different pathologic pathway, such as vascular cognitive impairment
Here Comes Grosz
Program for the eighth annual RISD Cabaret held in Cellar at the top of the Waterman Building. Publicity, posters, cartoons and program designed by Yoon Cho, Yu-Kyung Chung,Arther Jones, Scott King, Richard Lloyd and Polly Spencer.https://digitalcommons.risd.edu/liberalarts_cabaret_programs/1007/thumbnail.jp
The natural history of egg allergy in an observational cohort
There are few studies on the natural history of egg allergy and most are single site, not longitudinal, and have not identified early predictors of outcomes
Predicting Cognitive Decline in Older Adults Using Baseline Metrics of AD Pathologies, Cerebrovascular Disease, and Neurodegeneration
BACKGROUND AND OBJECTIVES: Dementia is a growing socioeconomic challenge that requires early intervention. Identifying biomarkers that reliably predict clinical progression early in the disease process would better aid selection of individuals for future trial participation. Here, we compared the ability of baseline, single time-point biomarkers (CSF amyloid 1-42, CSF ptau-181, white matter hyperintensities (WMH), cerebral microbleeds, whole-brain volume, and hippocampal volume) to predict decline in cognitively normal individuals who later converted to mild cognitive impairment (MCI) (CNtoMCI) and those with MCI who later converted to an Alzheimer disease (AD) diagnosis (MCItoAD). METHODS: Standardized baseline biomarker data from AD Neuroimaging Initiative 2 (ADNI2)/GO and longitudinal diagnostic data (including ADNI3) were used. Cox regression models assessed biomarkers in relation to time to change in clinical diagnosis using all follow-up time points available. Models were fit for biomarkers univariately and together in a multivariable model. Hazard ratios (HRs) were compared to evaluate biomarkers. Analyses were performed separately in CNtoMCI and MCItoAD groups. RESULTS: For CNtoMCI (n = 189), there was strong evidence that higher WMH volume (individual model: HR 1.79, p = 0.002; fully adjusted model: HR 1.98, p = 0.003) and lower hippocampal volume (individual: HR 0.54, p = 0.001; fully adjusted: HR 0.40, p < 0.001) were associated with conversion to MCI individually and independently. For MCItoAD (n = 345), lower hippocampal (individual model: HR 0.45, p < 0.001; fully adjusted model: HR 0.55, p < 0.001) and whole-brain volume (individual: HR 0.31, p < 0.001; fully adjusted: HR 0.48, p = 0.02), increased CSF ptau (individual: HR 1.88, p < 0.001; fully adjusted: HR 1.61, p < 0.001), and lower CSF amyloid (individual: HR 0.37, p < 0.001; fully adjusted: HR 0.62, p = 0.008) were most strongly associated with conversion to AD individually and independently. DISCUSSION: Lower hippocampal volume was a consistent predictor of clinical conversion to MCI and AD. CSF and brain volume biomarkers were predictive of conversion to AD from MCI, whereas WMH were predictive of conversion to MCI from cognitively normal. The predictive ability of WMH in the CNtoMCI group may be interpreted as some being on a different pathologic pathway, such as vascular cognitive impairment
- …