5 research outputs found

    Novel Acidic 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1) Inhibitor with Reduced Acyl Glucuronide Liability: The Discovery of 4‑[4-(2-Adamantylcarbamoyl)-5-<i>tert</i>-butyl-pyrazol-1-yl]benzoic Acid (AZD8329)

    No full text
    Inhibition of 11β-HSD1 is viewed as a potential target for the treatment of obesity and other elements of the metabolic syndrome. We report here the optimization of a carboxylic acid class of inhibitors from AZD4017 (<b>1</b>) to the development candidate AZD8329 (<b>27</b>). A structural change from pyridine to pyrazole together with structural optimization led to an improved technical profile in terms of both solubility and pharmacokinetics. The extent of acyl glucuronidation was reduced through structural optimization of both the carboxylic acid and amide substituents, coupled with a reduction in lipophilicity leading to an overall increase in metabolic stability

    Discovery of a Potent, Selective, and Orally Bioavailable Acidic 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1) Inhibitor: Discovery of 2-[(3<i>S</i>)-1-[5-(Cyclohexylcarbamoyl)-6-propylsulfanylpyridin-2-yl]-3-piperidyl]acetic Acid (AZD4017)

    No full text
    Inhibition of 11β-HSD1 is an attractive mechanism for the treatment of obesity and other elements of the metabolic syndrome. We report here the discovery of a nicotinic amide derived carboxylic acid class of inhibitors that has good potency, selectivity, and pharmacokinetic characteristics. Compound <b>11i</b> (AZD4017) is an effective inhibitor of 11β-HSD1 in human adipocytes and exhibits good druglike properties and as a consequence was selected for clinical development

    Discovery of Pyrazolo[1,5‑<i>a</i>]pyrimidine B‑Cell Lymphoma 6 (BCL6) Binders and Optimization to High Affinity Macrocyclic Inhibitors

    No full text
    Inhibition of the protein–protein interaction between B-cell lymphoma 6 (BCL6) and corepressors has been implicated as a therapeutic target in diffuse large B-cell lymphoma (DLBCL) cancers and profiling of potent and selective BCL6 inhibitors are critical to test this hypothesis. We identified a pyrazolo­[1,5-<i>a</i>]­pyrimidine series of BCL6 binders from a fragment screen in parallel with a virtual screen. Using structure-based drug design, binding affinity was increased 100000-fold. This involved displacing crystallographic water, forming new ligand–protein interactions and a macrocyclization to favor the bioactive conformation of the ligands. Optimization for slow off-rate constant kinetics was conducted as well as improving selectivity against an off-target kinase, CK2. Potency in a cellular BCL6 assay was further optimized to afford highly selective probe molecules. Only weak antiproliferative effects were observed across a number of DLBCL lines and a multiple myeloma cell line without a clear relationship to BCL6 potency. As a result, we conclude that the BCL6 hypothesis in DLBCL cancer remains unproven

    Structure Based Design of Non-Natural Peptidic Macrocyclic Mcl‑1 Inhibitors

    No full text
    Mcl-1 is a pro-apoptotic BH3 protein family member similar to Bcl-2 and Bcl-xL. Overexpression of Mcl-1 is often seen in various tumors and allows cancer cells to evade apoptosis. Here we report the discovery and optimization of a series of non-natural peptide Mcl-1 inhibitors. Screening of DNA-encoded libraries resulted in hit compound <b>1</b>, a 1.5 μM Mcl-1 inhibitor. A subsequent crystal structure demonstrated that compound <b>1</b> bound to Mcl-1 in a β-turn conformation, such that the two ends of the peptide were close together. This proximity allowed for the linking of the two ends of the peptide to form a macrocycle. Macrocyclization resulted in an approximately 10-fold improvement in binding potency. Further exploration of a key hydrophobic interaction with Mcl-1 protein and also with the moiety that engages Arg256 led to additional potency improvements. The use of protein–ligand crystal structures and binding kinetics contributed to the design and understanding of the potency gains. Optimized compound <b>26</b> is a <3 nM Mcl-1 inhibitor, while inhibiting Bcl-2 at only 5 μM and Bcl-xL at >99 μM, and induces cleaved caspase-3 in MV4–11 cells with an IC<sub>50</sub> of 3 μM after 6 h

    Structure Based Design of Non-Natural Peptidic Macrocyclic Mcl‑1 Inhibitors

    No full text
    Mcl-1 is a pro-apoptotic BH3 protein family member similar to Bcl-2 and Bcl-xL. Overexpression of Mcl-1 is often seen in various tumors and allows cancer cells to evade apoptosis. Here we report the discovery and optimization of a series of non-natural peptide Mcl-1 inhibitors. Screening of DNA-encoded libraries resulted in hit compound <b>1</b>, a 1.5 μM Mcl-1 inhibitor. A subsequent crystal structure demonstrated that compound <b>1</b> bound to Mcl-1 in a β-turn conformation, such that the two ends of the peptide were close together. This proximity allowed for the linking of the two ends of the peptide to form a macrocycle. Macrocyclization resulted in an approximately 10-fold improvement in binding potency. Further exploration of a key hydrophobic interaction with Mcl-1 protein and also with the moiety that engages Arg256 led to additional potency improvements. The use of protein–ligand crystal structures and binding kinetics contributed to the design and understanding of the potency gains. Optimized compound <b>26</b> is a <3 nM Mcl-1 inhibitor, while inhibiting Bcl-2 at only 5 μM and Bcl-xL at >99 μM, and induces cleaved caspase-3 in MV4–11 cells with an IC<sub>50</sub> of 3 μM after 6 h
    corecore