23,012 research outputs found

    Heat and spin transport in a cold atomic Fermi gas

    Full text link
    Motivated by recent experiments measuring the spin transport in ultracold unitary atomic Fermi gases (Sommer et al., 2011; Sommer et al., 2011), we explore the theory of spin and heat transport in a three-dimensional spin-polarized atomic Fermi gas. We develop estimates of spin and thermal diffusivities and discuss magnetocaloric effects, namely the the spin Seebeck and spin Peltier effects. We estimate these transport coefficients using a Boltzmann kinetic equation in the classical regime and present experimentally accessible signatures of the spin Seebeck effect. We study an exactly solvable model that illustrates the role of momentum-dependent scattering in the magnetocaloric effects.Comment: 18 pages, 6 figures, slight notation changes from previous versio

    A VLT/FORS2 Multi-Slit Search for Lyman-alpha Emitting Galaxies at z~6.5

    Full text link
    We present results from a deep spectroscopic search in the 9150A atmospheric window for z~6.5 Lyman-alpha emitting galaxies using the VLT/FORS2. Our multi-slit+narrow-band filter survey covers a total spatial area of 17.6 sq. arcmin in four different fields and reaches fluxes down to 5x10^(-18) erg/s/cm^2 (7 sigma detection). Our detection limit is significantly fainter than narrow-band searches at this redshift and fainter also than the unlensed brightness of Hu et al.'s HCM6A at z=6.56, and thus provides better overlap with surveys at much lower redshifts. Eighty secure emission line galaxies are detected. However, based on their clear continuum emission shortward of the line or the presence of multiple lines, none of these can be Ly-alpha emission at z~6.5. Our null result of finding no z~6.5 Ly-alpha emitters suggests that the number density of Ly-alpha emitters with L>2x10^(42) erg/s declines by ~2 between z~3 and z~6.5.Comment: accepted by ApJ Letters (originally submitted June 11, 2004

    Training Churches in Faith and Work Discipleship

    Get PDF
    The goal of this study is to evaluate the effectiveness of two training mechanisms to equip churches to run an intensive faith and work discipleship program called the Gotham Fellowship. The first training involves participation in a week-long summer intensive training and the second training will happen through the development of a leaders’ handbook for implementing the Gotham Fellowship. Building upon the framework of the normative, existential and situational perspectives extensively outlined in this study, these church leaders will be equipped to lead a Gotham-like Fellows program in their churches to lay a foundation for a robust faith and work ministry. This training corresponds to the three perspectives. Normatively, those who will lead the Fellows program will learn a foundational biblical theology of work highlighting five passages of Scripture. Existentially, they will experience spiritually formative practices that highlight the need to engage God personally through adaptations of ancient devotional practices. Situationally, they will acquire and be trained to utilize tools that help apply the gospel’s power into the three areas of heart, community, and world through corresponding projects. CFW will utilize two main online surveys to assess the effectiveness of this training—the first survey will be sent out shortly after the summer intensive with a follow-up survey sent out after the completion of the first-year Gotham program. Through these two surveys, the hope is to improve these two training tools so that CFW can more effectively prepare churches to launch Gotham programs that will accelerate faith and work ministries around the world

    Hyperspectral Image Processing Using Locally Linear Embedding

    Get PDF
    We describe a method of processing hyperspectral images of natural scenes that uses a combination of k-means clustering and locally linear embedding (LLE). The primary goal is to assist anomaly detection by preserving spectral uniqueness among the pixels. In order to reduce redundancy among the pixels, adjacent pixels which are spectrally similar are grouped using the k-means clustering algorithm. Representative pixels from each cluster are chosen and passed to the LLE algorithm, where the high dimensional spectral vectors are encoded by a low dimensional mapping. Finally, monochromatic and tri-chromatic images are constructed from the k-means cluster assignments and LLE vector mappings. The method generates images where differences in the original spectra are reflected in differences in the output vector assignments. An additional benefit of mapping to a lower dimensional space is reduced data size. When spectral irregularities are added to a patch of the hyperspectral images, again the method successfully generated color assignments that detected the changes in the spectra

    Non-Gaussianity in Axion N-flation Models

    Get PDF
    We study perturbations in the multifield axion N-flation model, taking account of the full cosine potential. We find significant differences from previous analyses which made a quadratic approximation to the potential. The tensor-to-scalar ratio and the scalar spectral index move to lower values, which nevertheless provide an acceptable fit to observation. Most significantly, we find that the bispectrum non-Gaussianity parameter fNL may be large, typically of order 10 for moderate values of the axion decay constant, increasing to of order 100 for decay constants slightly smaller than the Planck scale. Such a non-Gaussian fraction is detectable. We argue that this property is generic in multifield models of hilltop inflation

    Searching for Dust around Hyper Metal-Poor Stars

    Get PDF
    We examine the mid-infrared fluxes and spectral energy distributions for metal-poor stars with iron abundances [Fe/H] 5\lesssim-5, as well as two CEMP-no stars, to eliminate the possibility that their low metallicities are related to the depletion of elements onto dust grains in the formation of a debris disk. Six out of seven stars examined here show no mid-IR excess. These non-detections rule out many types of circumstellar disks, e.g. a warm debris disk (T ⁣ ⁣290T\!\le\!290 K), or debris disks with inner radii 1\le1 AU, such as those associated with the chemically peculiar post-AGB spectroscopic binaries and RV Tau variables. However, we cannot rule out cooler debris disks, nor those with lower flux ratios to their host stars due to, e.g. a smaller disk mass, a larger inner disk radius, an absence of small grains, or even a multicomponent structure, as often found with the chemically peculiar Lambda Bootis stars. The only exception is HE0107-5240, for which a small mid-IR excess near 10 microns is detected at the 2-σ\sigma level; if the excess is real and associated with this star, it may indicate the presence of (recent) dust-gas winnowing or a binary system.Comment: Accepted for publication in Ap

    On Approximating Node-Disjoint Paths in Grids

    Get PDF
    In the Node-Disjoint Paths (NDP) problem, the input is an undirected n-vertex graph G, and a collection {(s_1,t_1),...,(s_k,t_k)} of pairs of vertices called demand pairs. The goal is to route the largest possible number of the demand pairs (s_i,t_i), by selecting a path connecting each such pair, so that the resulting paths are node-disjoint. NDP is one of the most basic and extensively studied routing problems. Unfortunately, its approximability is far from being well-understood: the best current upper bound of O(sqrt(n)) is achieved via a simple greedy algorithm, while the best current lower bound on its approximability is Omega(log^{1/2-delta}(n)) for any constant delta. Even for seemingly simpler special cases, such as planar graphs, and even grid graphs, no better approximation algorithms are currently known. A major reason for this impasse is that the standard technique for designing approximation algorithms for routing problems is LP-rounding of the standard multicommodity flow relaxation of the problem, whose integrality gap for NDP is Omega(sqrt(n)) even on grid graphs. Our main result is an O(n^{1/4} * log(n))-approximation algorithm for NDP on grids. We distinguish between demand pairs with both vertices close to the grid boundary, and pairs where at least one of the two vertices is far from the grid boundary. Our algorithm shows that when all demand pairs are of the latter type, the integrality gap of the multicommodity flow LP-relaxation is at most O(n^{1/4} * log(n)), and we deal with demand pairs of the former type by other methods. We complement our upper bounds by proving that NDP is APX-hard on grid graphs
    corecore