51 research outputs found

    Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder

    Full text link
    Green composites were prepared with polypropylene matrix and 20 wt.% spent coffee ground (SCG) powder for uses as a wood plastic composite (WPC). The effects of hydrophobic treatment with palmitoyl chloride on SCG powder is compared with conventional surface treatment based on silanization with (3-glycidyloxypropyl) trimethoxysilane and the use of a maleated copolymer compatibilizer (polypropylene-graft-maleic anhydride, PP-g-MA) in terms of mechanical properties, morphology, thermal properties and water uptake. Composites were previously mixed in a twin-screw co-rotating extruder and subsequently subjected to injection moulding. The comparative effect of the different surface treatments and or compatibilizers on mechanical performance was studied by flexural, impact tests and dynamic mechanical thermal analysis (DMTA-torsion); in addition, the stabilizing effect of SCG was revealed by differential scanning calorimetry (DSC) and thermogravymetric analysis (TGA). As one of the main drawbacks of wood plastic composites and natural fibre reinforced plastics is the moisture gain, water uptake tests were carried out in order to quantify the effectiveness of the hydrophobization process with palmitoyl chloride. Results show a slight increase in flexural modulus for composites with both untreated and treated/compatibilized SCG powder (20 wt.%). As expected, thermal stability is improved as indicated by an increase of more than 8% in the onset degradation temperature by DSC if compared to unfilled polypropylene. Fracture analysis by scanning electron microscopy (SEM) shows better particle dispersion for PP-SCG composites with hydrophobized SCG with palmitoyl chloride treatment; in addition a remarkable decrease in water uptake is observed for composites with hydrophobized SCG. ©2015 Elsevier Ltd. All rights reserved.García García, D.; Carbonell Verdú, A.; Samper Madrigal, MD.; García Sanoguera, D.; Balart Gimeno, RA. (2015). Green composites based on polypropylene matrix and hydrophobized spend coffee ground (SCG) powder. Composites Part B: Engineering. 78:256-265. doi:10.1016/j.compositesb.2015.03.0802562657

    Development and characterization of a new natural fiber reinforced thermoplastic (NFRP) with Cortaderia selloana (Pampa grass) short fibers

    Full text link
    [EN] In this work, fully bio-based thermoplastic composites are manufactured with bio-based polyethylene (from sugarcane) and short fibers coming from Cortaderia selloana (CS) wastes. These wastes are characterized by high cellulose content, which can provide high stiffness to the polymeric matrix. The effect of Cortaderia selloana short fibers on thermal properties has been evaluated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The effect of the filler load on mechanical properties has also been evaluated by tensile and impact tests as well as the effects of different coupling agents. Fiber-matrix interactions have been studied by scanning electron microscopy (SEM). The addition of 15-30 wt% Cortaderia selloana short fiber leads to high elastic and flexural modulus without remarkable changes in thermal degradation of the polymer composite. (C) 2017 Elsevier Ltd. All rights reserved.This work was funded by the Conselleria d'Educacio, Cultura i Esport (Generalitat Valenciana) Ref: GV/2014/008. The authors declare that they have no conflict of interest.Jorda-Vilaplana, A.; Carbonell-Verdu, A.; Samper, M.; Pop, A.; García Sanoguera, D. (2017). Development and characterization of a new natural fiber reinforced thermoplastic (NFRP) with Cortaderia selloana (Pampa grass) short fibers. Composites Science and Technology. 145:1-9. https://doi.org/10.1016/j.compscitech.2017.03.036S1914

    Study, mechanical characterization and mathematical modeling of compatible SEBS blends for industrial applications in orthopedics and childcare

    Full text link
    "This is an Accepted Manuscript of an article published by Taylor & Francis in Polymer-Plastics Technology and Engineering on JUL 15 2013, available online:www.tandfonline.com/doi/full/10.1080/03602559.2013.763363"In this work, a system of compatible blends based on two commercial grades of a thermoplastic elastomer, styrene-ethylene/ butylene-styrene (SEBS), with extreme Shore A hardness values (5 and 90), was studied in order to obtain a range of different performance blends for orthopedic and childcare applications, where usually liquid silicone rubber is used. Mechanical properties of different blends were obtained, and Equivalent Box Model (EBM) was used for the prediction of the mechanical behavior. The results show good agreement between the theoretical model and experimental data of new blends of SEBS.The authors thank "Ministerio de Ciencia y Tecnologia", Ref: DPI2007-66849-C02-02 and Generalitat Valenciana FPA/2010/027 for financial support.Juárez Varón, D.; García Sanoguera, D.; Ferrándiz Bou, S.; Peydro, MA.; Balart Gimeno, RA. (2013). Study, mechanical characterization and mathematical modeling of compatible SEBS blends for industrial applications in orthopedics and childcare. Polymer-Plastics Technology and Engineering. 52(9):862-868. https://doi.org/10.1080/03602559.2013.763363S862868529Xiao, D., Mo, Y., & Choi, M. M. F. (2003). A hand-held optical sensor for dissolved oxygen measurement. Measurement Science and Technology, 14(6), 862-867. doi:10.1088/0957-0233/14/6/323Sagripanti, J.-L., & Bonifacino, A. (1996). Comparative sporicidal effect of liquid chemical germicides on three medical devices contaminated with spores of Bacillus subtilis. American Journal of Infection Control, 24(5), 364-371. doi:10.1016/s0196-6553(96)90024-3Mahomed, A., Hukins, D. W. L., & Kukureka, S. N. (2010). Swelling of medical grade silicones in liquids and calculation of their cross-link densities. Medical Engineering & Physics, 32(4), 298-303. doi:10.1016/j.medengphy.2009.12.004Kim, E.-G., Oh, J., & Choi, B. (2006). A study on the development of a continuous peristaltic micropump using magnetic fluids. Sensors and Actuators A: Physical, 128(1), 43-51. doi:10.1016/j.sna.2006.01.021Barbaroux, M., Stalet, G., Regnier, G., & Trotignon, J.-P. (1997). Determination of the Inter-Relationships Between Processing Conditions and Properties of an Injection Molded Silicone Ring Using an Experimental Design. International Polymer Processing, 12(2), 174-181. doi:10.3139/217.970174Barbaroux, M., Régnier, G., & Verdu, J. (2000). Effect of cavity pressure on crosslink density of injection moulded silicone rubber. Plastics, Rubber and Composites, 29(5), 229-234. doi:10.1179/146580100101541003Lopez, L. M., Cosgrove, A. B., Hernandez-Ortiz, J. P., & Osswald, T. A. (2007). Modeling the vulcanization reaction of silicone rubber. Polymer Engineering & Science, 47(5), 675-683. doi:10.1002/pen.20698Bose, S., Mukherjee, M., & Das, C. K. (2009). Silicone Rubber Compatibilized Syndiotactic Polystyrene and Thermotropic Liquid Crystalline Polymer (Vectra A950) Blend. Polymer-Plastics Technology and Engineering, 48(2), 158-163. doi:10.1080/03602550802577346Vijayalakshmi, N., Reddy, M. M., Naidu, S. V., Ramanjappa, T., & Appalanaidu, P. (2008). Immiscibility of Silicone Rubber and Polymethylmethacrylate. International Journal of Polymeric Materials and Polymeric Biomaterials, 57(7), 709-716. doi:10.1080/00914030801891302Wang, J., Feng, L., Chao, X., & Feng, Y. (2012). Performance of Room Temperature Vulcanized (RTV) Silicone Rubber-Based Composites: DBDPO/RTV and DBDPE/Sb2O3/RTV. Polymer-Plastics Technology and Engineering, 51(12), 1245-1250. doi:10.1080/03602559.2012.699130Wu, C., Li, W., Gao, D., & Jia, M. (2009). Study of Resistance of Silicone Resin to Heat and Irradiation. Polymer-Plastics Technology and Engineering, 48(10), 1094-1100. doi:10.1080/03602550903147213Ahmad, Z., Kumar, K. D., Saroop, M., Preschilla, N., Biswas, A., Bellare, J. R., & Bhowmick, A. K. (2009). Highly transparent thermoplastic elastomer from isotactic polypropylene and styrene/ethylene-butylene/styrene triblock copolymer: Structure-property correlations. Polymer Engineering & Science, 50(2), 331-341. doi:10.1002/pen.21540Barbe, A., Bökamp, K., Kummerlöwe, C., Sollmann, H., Vennemann, N., & Vinzelberg, S. (2005). Investigation of modified SEBS-based thermoplastic elastomers by temperature scanning stress relaxation measurements. Polymer Engineering & Science, 45(11), 1498-1507. doi:10.1002/pen.20427Masoomi, M., Katbab, A. A., & Nazockdast, H. (2006). Reduction of Noise from Disc Brake Systems Using Composite Friction Materials Containing Thermoplastic Elastomers (TPEs). Applied Composite Materials, 13(5), 305-319. doi:10.1007/s10443-006-9018-7Puskas, J. E., Foreman-Orlowski, E. A., Lim, G. T., Porosky, S. E., Evancho-Chapman, M. M., Schmidt, S. P., … Lovejoy, K. (2010). A nanostructured carbon-reinforced polyisobutylene-based thermoplastic elastomer. Biomaterials, 31(9), 2477-2488. doi:10.1016/j.biomaterials.2009.12.003Reddy, S., Arzt, E., & del Campo, A. (2007). Bioinspired Surfaces with Switchable Adhesion. Advanced Materials, 19(22), 3833-3837. doi:10.1002/adma.200700733Xu, J., Zhang, A., Zhou, T., Cao, X., & Xie, Z. (2007). A study on thermal oxidation mechanism of styrene–butadiene–styrene block copolymer (SBS). Polymer Degradation and Stability, 92(9), 1682-1691. doi:10.1016/j.polymdegradstab.2007.06.008Chow, W. S., & Neoh, S. S. (2009). Mechanical, Morphological and Thermal Properties of Polycarbonate/SEBS-G-MA/Montmorillonite Nanocomposites. Polymer-Plastics Technology and Engineering, 49(1), 62-68. doi:10.1080/03602550903283034Hong, X., Nie, G., Lin, Z., & Rong, J. (2012). Structure and Properties of PPO/PP Blends Compatibilized by Triblock Copolymer SEBS and SEPS. Polymer-Plastics Technology and Engineering, 51(10), 971-976. doi:10.1080/03602559.2012.671422Savadekar, N. R., & Mhaske, S. T. (2010). The Effect of Vulcanized Thermoplastics and SEBS on the Impact Strength of PPT. Polymer-Plastics Technology and Engineering, 49(15), 1499-1505. doi:10.1080/03602559.2010.496426Taşdemir, M., Ersoy, S., & Uluğ, E. (2012). Effects of HIPS on the Sound Absorption and Impedance Ratio of SEBS/HIPS/CaCO3Polymer Composites. Polymer-Plastics Technology and Engineering, 51(9), 954-958. doi:10.1080/03602559.2012.680563Taşdemir, M., & Uluğ, E. (2012). Mechanical, Morphological and Thermal Properties of SEBS, SIS and SBR-type Thermoplastic Elastomers Toughened High Impact Polystyrene. Polymer-Plastics Technology and Engineering, 51(2), 164-169. doi:10.1080/03602559.2011.618169Stephenson, M. J., & Dargush, G. F. (2002). Development of a curvilinear viscoelastic constitutive relationship for time dependent materials. Part B: Example problems. Polymer Engineering & Science, 42(3), 529-538. doi:10.1002/pen.10969Stephenson, M. J., & Dargush, G. F. (2002). Development of a curvilinear viscoelastic constitutive relationship for time dependent materials. Part A: Theoretical discussion. Polymer Engineering & Science, 42(3), 519-528. doi:10.1002/pen.10968Hernández, R., Peña, J. J., Irusta, L., & Santamarı́a, A. (2000). The effect of a miscible and an immiscible polymeric modifier on the mechanical and rheological properties of PVC. European Polymer Journal, 36(5), 1011-1025. doi:10.1016/s0014-3057(99)00146-9Vaccaro, E., DiBenedetto, A. T., & Huang, S. J. (1997). Yield strength of low-density polyethylene-polypropylene blends. Journal of Applied Polymer Science, 63(3), 275-281. doi:10.1002/(sici)1097-4628(19970118)63:33.0.co;2-kKolařk, J. (1998). Simultaneous prediction of the modulus, tensile strength and gas permeability of binary polymer blends. European Polymer Journal, 34(5-6), 585-590. doi:10.1016/s0014-3057(97)00176-6Robeson, L. M., & Berner, R. A. (2001). Mechanical properties of emulsion polymer blends. Journal of Polymer Science Part B: Polymer Physics, 39(11), 1093-1106. doi:10.1002/polb.108

    Properties and processing of liquid silicone injected

    Full text link
    [EN] Silicones are polymeric character materials formed by a chain of alternating silicon atoms and oxygen atoms, which constitute good elastomers because the main chain is very flexible. The biocompatibility of silicone is formulated completely with FDA Biocompatibility Guidelines (Food and Drug Administration). Its manufacturing is based on radical addition vulcanizing (HTV) and thanks to their chemical structure are achieved special technical and aesthetic results difficult to obtain with traditional products. Injection molding of liquid silicone has several advantages in the manufacture of silicone, emphasizing the excellent speed and termination of the products, although it emphasizes the great difficulty in the design and machining of molds.[ES] Las siliconas son materiales de naturaleza polimérica, formados por una cadena alternada de átomos de silicio y de oxígeno, que constituyen buenos elastómeros porque la cadena principal es muy flexible. La biocompatibilidad de la silicona está formulada por completo con la FDA Biocompatibility Guidelines (food and drug administration). Su fabricación está basada en vulcanización por adición de radicales (HTV) y gracias a su estructura química se logran resultados técnicos y estéticos especiales difíciles de obtener con los productos tradicionales. El moldeo por inyección de silicona líquida tiene varias ventajas en la fabricación de piezas de silicona, destacándose la velocidad y la excelente terminación de los productos, aunque destaca la gran dificultad en el diseño y mecanizado de los moldes.Juárez Varón, D.; Balart Gimeno, RA.; Ferrándiz Bou, S.; García Sanoguera, D. (2013). Propiedades y procesado de la silicona líquida inyectada. 3c Tecnologia. (4):43-53. http://hdl.handle.net/10251/334964353

    Development of a biocomposite based on green polyethylene biopolymer and eggshell

    Full text link
    In this investigation a fully biobased composite material has been obtained using a biobased polyethylene obtained from sugar cane as matrix and eggshell (ES) as filler. ES was studied in order to replace mineral carbonate calcium as polymer filler, which is commonly used. In order to do this the ES has been chemically modified and then its potential for the development of a biocomposite was evaluated. The filler adhesion to the polymer matrix has been improved using titanate particle treatment which has been chosen between silane and zirconate. The use of titanate as coupling agent enlarges the range of operating temperatures and also improves the interfacial bonding as it is displayed in impact fracture surface. Mechanical, thermal and rheological analysis were carried out in order to analyze the effect of the modified ES loading percentage. Thermal analysis showed a proportional effect of the filler load over the degradation temperature and an inversely effect over the enthalpy. Effect of the modified ES content on mechanical properties of PE/ES was also studied. The results showed that the modified CaCO3 can effectively improve the mechanical properties of bio PE, improving stiffness, hardness, flexural and tensile modulus. The amount of filler increases the viscosity, this fact specially hinders the processing processes which work with low shear rates. (C) 2014 Elsevier Ltd. All rights reserved.This study has been funded by the "Conselleria d'Educacio, Cultura i Esport" - Generalitat Valenciana (Reference number: GV/2014/008). The authors wish to thank to "Confiteria El Tunel" and to "Dulces Hispania" to collaborate in providing the eggshell.Boronat Vitoria, T.; Fombuena Borrás, V.; García Sanoguera, D.; Sánchez Nacher, L.; Balart Gimeno, RA. (2015). Development of a biocomposite based on green polyethylene biopolymer and eggshell. Materials and Design. 68:177-185. doi:10.1016/j.matdes.2014.12.027S1771856

    Mejora de las propiedades adhesivas de PLA/PLA mediante adhesivos biodegradables

    Full text link
    En el campo del envase y el embalaje, donde se produce alto volumen de residuos, hay una gran demanda de materiales biodegradables, que no dañen el medio ambiente, y que además se puedan degradar de forma natural con el tiempo. Este sector produce un gran volumen de residuos que acaban depositados en el medio ambiente, con la consecuente contaminación que esto conlleva. Además la tendencia actual, sobretodo en grandes superficies, de envasar la mayoría de productos y la utilización de productos denominados de usar y tirar incrementa este volumen de residuos. Por tanto, es necesaria la sustitución de estos residuos por materiales biodegradables que no dañen el medio ambiente. Además de esto, este sector industrial requiere buenas propiedades adhesivas en los sustratos que utiliza para fabricar los envases en función del diseño del mismo. Como novedad se pretende tratar el biopolímero elegido, en este caso el PLA, con tratamiento superficial con plasma atmosférico, para mejorar sus propiedades de humectabilidad y por lo tanto de adhesión, utilizando un adhesivo biodegradable.Jorda-Vilaplana, A.; Fombuena Borrás, V.; García García, D.; Sánchez Nacher, L.; García Sanoguera, D. (2014). Mejora de las propiedades adhesivas de PLA/PLA mediante adhesivos biodegradables. Compobell, S.L. http://hdl.handle.net/10251/70659

    Study, analisys and classification of thermoplastic elastomers

    Full text link
    [EN] This study aims to collect, analyze and classify the different thermoplastic elastomersin order to carry out a review of art and be given sufficient information about this set of materials with characteristics based on reprocess ability and elasticity.[ES] El presente estudio pretende recopilar, analizar y clasificar los diferentes materiales termoplásticos elastómeros, para llevar a cabo un estudio del arte y poder disponer de información suficiente acerca de este conjunto de materiales con características propias basadas en la reprocesabilidad y elasticidad.Juárez Varón, D.; Balart Gimeno, RA.; Ferrándiz Bou, S.; García Sanoguera, D. (2012). Estudio, análisis y clasificación de elastómeros termoplásticos. 3c Tecnologia. (2):22-41. http://hdl.handle.net/10251/34263S2241

    Study of phase change materials (PCM) AND SEM analysis of micro PCM

    Full text link
    [EN] This study analyzes the different classifications of phase change materials available at industrial level, in order to identify those that are potentially viable for addition with thermoplastic materials. Also, select a potentially interesting PCM and perform microscopic analysis of it.[ES] El presente estudio pretende analizar las diferentes clasificaciones de materiales con cambio de fase disponibles a nivel industrial, para identificar aquellos que son potencialmente viables para su adición en materiales termoplásticos. Igualmente, seleccionar un PCM potencialmente interesante y llevar a cabo un análisis microscópico del mismo.Authors thank “Ministerio de Ciencia y Tecnología”, Ref. DPI2007-66849-C02-02 and Generalitat Valenciana FPA/2010/027 for financial support.Juárez Varón, D.; Balart Gimeno, RA.; Ferrándiz Bou, S.; García Sanoguera, D. (2012). Estudio de materiales con cambio de fase (PCM) y análisis SEM de micro PCM. 3c Tecnologia. (3):54-77. http://hdl.handle.net/10251/34264S5477

    Study and analysis of polymers styrene-butadiene derivatives

    Full text link
    [EN] This article aims to study and analyze polymers derived from styrene-butadiene, known as SBR rubber, being the most widely used worldwide and having replaced almost entirely natural rubber, identifying their properties, classification, applications and possible additives[ES] El presente artículo tiene como objetivo el estudio y análisis de los polímeros derivados del estireno-butadieno, más conocidos como cauchos SBR, siendo los más utilizados a nivel mundial y habiendo sustituido prácticamente en su totalidad al natural, identificando sus propiedades, clasificación, aplicaciones y posibles aditivos.Authors thank “Ministerio de Ciencia y Tecnología”, Ref: DPI2007-66849-C02-02 and Generalitat Valenciana FPA/2010/027 for financial support.Juárez Varón, D.; Balart Gimeno, RA.; Ferrándiz Bou, S.; García Sanoguera, D. (2013). Estudio y análisis de los polímeros derivados del estireno-butadieno. 3c Tecnologia. (4):26-42. http://hdl.handle.net/10251/33655S2642

    Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/polycaprolactone blends

    Full text link
    This is the accepted version of the following article: Ferri, J. M.; Fenollar, O.; Jorda-Vilaplana, A.; Garcia-Sanoguera, D.; Balart, R. (2016). "Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/polycaprolactone blends". Polymer International. 65(4):453-463. doi:10.1002/pi.5079., which has been published in final form at http://dx.doi.org/10.1002/pi.5079 .Binary blends based on poly(lactic acid) (PLA) and polycaprolactone (PCL) were prepared by melt mixing in a twin-screw co-rotating extruder in order to increase the low intrinsic elongation at break of PLA for packaging applications. Although PLA and PCL show low miscibility, the presence of PCL leads to a marked improvement in the ductile properties of PLA. Various mechanical properties were evaluated in terms of PCL content up to 30wt% PCL. In addition to tensile and flexural properties, Poisson s ratio was obtained using biaxial extensometry to evaluate transversal deformations when axial loads are applied. Very slight changes in the melt temperature and glass transition temperature of PLA are observed thus indicating the low miscibility of the PLA PCL system. Field emission scanning electron microscopy reveals some interactions between the two components of the blend since the morphology is characterized by non-spherical polycaprolactone drops dispersed into the PLA matrix. In addition to the improvement of mechanical ductile properties, PCL provides higher degradation rates of blends under conditions of composting for contents below 22.5% PCL.This research was supported by the Ministry of Economy and Competitiveness - MINECO, ref. MAT2014-59242-C2-1-R. The authors also thank the Conselleria d'Educacio, Cultura i Esport - Generalitat Valenciana, ref. GV/2014/008 for financial support.Ferri Azor, JM.; Fenollar Gimeno, OÁ.; Jorda-Vilaplana, A.; García Sanoguera, D.; Balart Gimeno, RA. (2016). Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/polycaprolactone blends. Polymer International. 65(4):453-463. https://doi.org/10.1002/pi.5079S45346365
    corecore