22 research outputs found

    Decompositions of high-frequency Helmholtz solutions via functional calculus, and application to the finite element method

    Get PDF
    Over the last ten years, results from [Melenk-Sauter, 2010], [Melenk-Sauter, 2011], [Esterhazy-Melenk, 2012], and [Melenk-Parsania-Sauter, 2013] decomposing high-frequency Helmholtz solutions into "low"- and "high"-frequency components have had a large impact in the numerical analysis of the Helmholtz equation. These results have been proved for the constant-coefficient Helmholtz equation in either the exterior of a Dirichlet obstacle or an interior domain with an impedance boundary condition. Using the Helffer-Sj\"ostrand functional calculus, this paper proves analogous decompositions for scattering problems fitting into the black-box scattering framework of Sj\"ostrand-Zworski, thus covering Helmholtz problems with variable coefficients, impenetrable obstacles, and penetrable obstacles all at once. In particular, these results allow us to prove new frequency-explicit convergence results for (i) the hphp-finite-element method applied to the variable coefficient Helmholtz equation in the exterior of a Dirichlet obstacle, when the obstacle and coefficients are analytic, and (ii) the hh-finite-element method applied to the Helmholtz penetrable-obstacle transmission problem

    Decompositions of high-frequency Helmholtz solutions via functional calculus, and application to the finite element method

    Get PDF
    Over the last ten years, results from [48], [49], [22], and [47] decomposing high-frequency Helmholtz solutions into “low”- and “high”-frequency components have had a large impact in the numerical analysis of the Helmholtz equation. These results have been proved for the constant-coefficient Helmholtz equation in either the exterior of a Dirichlet obstacle or an interior domain with an impedance boundary condition. Using the Helffer–Sj¨ostrand functional calculus [33], this paper proves analogous decompositions for scattering problems fitting into the black-box scattering framework of Sj¨ostrandZworski [63], thus covering Helmholtz problems with variable coefficients, impenetrable obstacles, and penetrable obstacles all at once. These results allow us to prove new frequency-explicit convergence results for (i) the hpf inite-element method (hp-FEM) applied to the variable-coefficient Helmholtz equation in the exterior of an analytic Dirichlet obstacle, where the coefficients are analytic in a neighbourhood of the obstacle, and (ii) the h-FEM applied to the Helmholtz penetrable-obstacle transmission problem. In particular, the result in (i) shows that the hp-FEM applied to this problem does not suffer from the pollution effect

    The hphp-FEM applied to the Helmholtz equation with PML truncation does not suffer from the pollution effect

    Full text link
    We consider approximation of the variable-coefficient Helmholtz equation in the exterior of a Dirichlet obstacle using perfectly-matched-layer (PML) truncation; it is well known that this approximation is exponentially accurate in the PML width and the scaling angle, and the approximation was recently proved to be exponentially accurate in the wavenumber kk in [Galkowski, Lafontaine, Spence, 2021]. We show that the hphp-FEM applied to this problem does not suffer from the pollution effect, in that there exist C1,C2>0C_1,C_2>0 such that if hk/pC1hk/p\leq C_1 and pC2logkp \geq C_2 \log k then the Galerkin solutions are quasioptimal (with constant independent of kk), under the following two conditions (i) the solution operator of the original Helmholtz problem is polynomially bounded in kk (which occurs for "most" kk by [Lafontaine, Spence, Wunsch, 2021]), and (ii) either there is no obstacle and the coefficients are smooth or the obstacle is analytic and the coefficients are analytic in a neighbourhood of the obstacle and smooth elsewhere. This hphp-FEM result is obtained via a decomposition of the PML solution into "high-" and "low-frequency" components, analogous to the decomposition for the original Helmholtz solution recently proved in [Galkowski, Lafontaine, Spence, Wunsch, 2022]. The decomposition is obtained using tools from semiclassical analysis (i.e., the PDE techniques specifically designed for studying Helmholtz problems with large kk).Comment: arXiv admin note: text overlap with arXiv:2102.1308

    Net-zero solutions and research priorities in the 2020s

    Get PDF
    Key messages • Technological, societal and nature-based solutions should work together to enable systemic change towards a regenerative society, and to deliver net-zero greenhouse gas (GHG) emissions. • Prioritise research into efficient, low-carbon and carbon-negative solutions for sectors that are difficult to decarbonise; i.e. energy storage, road transport, shipping, aviation and grid infrastructure. • Each solution should be assessed with respect to GHG emissions reductions, energy efficiency and societal implications to provide a basis for developing long-term policies, maximising positive impact of investment and research effort, and guiding industry investors in safe and responsible planning

    PI Control of discrete linear repetitive processes

    No full text
    Repetitive processes are a distinct class of 2D systems (i.e. information propagation in two independent directions) of both systems theoretic and applications interest. They cannot be controlled by direct extension of existing techniques from either standard (termed 1D here) or 2D systems theory. In this paper, we exploit their unique physical structure to show how two term, i.e. proportional plus integral (or PI) action, can be used to control these processes to produce desired behavior (as opposed to just stability)

    Perfectly-matched-layer truncation is exponentially accurate at high frequency

    No full text

    Perfectly-Matched-Layer Truncation is Exponentially Accurate at High Frequency

    No full text
    We consider a wide variety of scattering problems including scattering by Dirichlet, Neumann, and penetrable obstacles. We consider a radial perfectly-matched layer (PML) and show that for any PML width and a steep-enough scaling angle, the PML solution is exponentially close, both in frequency and the tangent of the scaling angle, to the true scattering solution. Moreover, for a fixed scaling angle and large enough PML width, the PML solution is exponentially close to the true scattering solution in both frequency and the PML width. In fact, the exponential bound holds with rate of decay c(wtanθ−C)k where w is the PML width and θ is the scaling angle. More generally, the results of the paper hold in the framework of black-box scattering under the assumption of an exponential bound on the norm of the cutoff resolvent, thus including problems with strong trapping. These are the first results on the exponential accuracy of PML at high-frequency with non-trivial scatterers

    Local absorbing boundary conditions on fixed domains give order-one errors for high-frequency waves

    Get PDF
    We consider approximating the solution of the Helmholtz exterior Dirichlet problem for a nontrapping obstacle, with boundary data coming from plane-wave incidence, by the solution of the corresponding boundary value problem where the exterior domain is truncated and a local absorbing boundary condition coming from a Pad\'e approximation (of arbitrary order) of the Dirichlet-to-Neumann map is imposed on the artificial boundary (recall that the simplest such boundary condition is the impedance boundary condition). We prove upper- and lower-bounds on the relative error incurred by this approximation, both in the whole domain and in a fixed neighbourhood of the obstacle (i.e. away from the artificial boundary). Our bounds are valid for arbitrarily-high frequency, with the artificial boundary fixed, and show that the relative error is bounded away from zero, independent of the frequency, and regardless of the geometry of the artificial boundary.Comment: 85 page
    corecore