23,668 research outputs found
Reconciling optical and radio observations of the binary millisecond pulsar PSR J1640+2224
Previous optical and radio observations of the binary millisecond pulsar PSR
J1640+2224 have come to inconsistent conclusions about the identity of its
companion, with some observations suggesting the companion is a low-mass
helium-core (He-core) white dwarf (WD), while others indicate it is most likely
a high-mass carbon-oxygen (CO) WD. Binary evolution models predict PSR
J1640+2224 most likely formed in a low-mass X-ray binary (LMXB) based on the
pulsar's short spin period and long-period, low-eccentricity orbit, in which
case its companion should be a He-core WD with mass about , depending on metallicity. If it is instead a CO WD, that would
suggest the system has an unusual formation history. In this paper we present
the first astrometric parallax measurement for this system from observations
made with the Very Long Baseline Array (VLBA), from which we determine the
distance to be . We use this distance and a
reanalysis of archival optical observations originally taken in 1995 with the
Wide Field Planetary Camera 2 (WFPC2) on the Hubble Space Telescope (HST) in
order to measure the WD's mass. We also incorporate improvements in
calibration, extinction model, and WD cooling models. We find that the existing
observations are not sufficient to tightly constrain the companion mass, but we
conclude the WD mass is with confidence. The limiting
factor in our analysis is the low signal-to-noise ratio of the original HST
observations.Comment: 6 pages, 5 figure
A correlated-polaron electronic propagator: open electronic dynamics beyond the Born-Oppenheimer approximation
In this work we develop a theory of correlated many-electron dynamics dressed
by the presence of a finite-temperature harmonic bath. The theory is based on
the ab-initio Hamiltonian, and thus well-defined apart from any
phenomenological choice of collective basis states or electronic coupling
model. The equation-of-motion includes some bath effects non-perturbatively,
and can be used to simulate line- shapes beyond the Markovian approximation and
open electronic dynamics which are subjects of renewed recent interest. Energy
conversion and transport depend critically on the ratio of electron-electron
coupling to bath-electron coupling, which is a fitted parameter if a
phenomenological basis of many-electron states is used to develop an electronic
equation of motion. Since the present work doesn't appeal to any such basis, it
avoids this ambiguity. The new theory produces a level of detail beyond the
adiabatic Born-Oppenheimer states, but with cost scaling like the
Born-Oppenheimer approach. While developing this model we have also applied the
time-convolutionless perturbation theory to correlated molecular excitations
for the first time. Resonant response properties are given by the formalism
without phenomenological parameters. Example propagations with a developmental
code are given demonstrating the treatment of electron-correlation in
absorption spectra, vibronic structure, and decay in an open system.Comment: 25 pages 7 figure
Equation of state at high densities and modern compact star observations
Recently, observations of compact stars have provided new data of high
accuracy which put strong constraints on the high-density behaviour of the
equation of state of strongly interacting matter otherwise not accessible in
terrestrial laboratories. The evidence for neutron stars with high mass (M =2.1
+/- 0.2 M_sun for PSR J0751+1807) and large radii (R > 12 km for RX J1856-3754)
rules out soft equations of state and has provoked a debate whether the
occurence of quark matter in compact stars can be excluded as well. In this
contribution it is shown that modern quantum field theoretical approaches to
quark matter including color superconductivity and a vector meanfield allow a
microscopic description of hybrid stars which fulfill the new, strong
constraints. The deconfinement transition in the resulting stiff hybrid
equation of state is weakly first order so that signals of it have to be
expected due to specific changes in transport properties governing the
rotational and cooling evolution caused by the color superconductivity of quark
matter. A similar conclusion holds for the investigation of quark deconfinement
in future generations of nucleus-nucleus collision experiments at low
temperatures and high baryon densities such as CBM @ FAIR.Comment: 6 pages, 2 figures, accepted for publication in J. Phys. G. (Special
Issue
1-2-3-flavor color superconductivity in compact stars
We suggest a scenario where the three light quark flavors are sequentially
deconfined under increasing pressure in cold asymmetric nuclear matter, e.g.,
as in neutron stars. The basis for our analysis is a chiral quark matter model
of Nambu--Jona-Lasinio (NJL) type with diquark pairing in the spin-1 single
flavor (CSL) and spin-0 two/three flavor (2SC/CFL) channels, and a
Dirac-Brueckner Hartree-Fock (DBHF) approach in the nuclear matter sector. We
find that nucleon dissociation sets in at about the saturation density, n_0,
when the down-quark Fermi sea is populated (d-quark dripline) due to the flavor
asymmetry imposed by beta-equilibrium and charge neutrality. At about 3n_0
u-quarks appear forming a two-flavor color superconducting (2SC) phase, while
the s-quark Fermi sea is populated only at still higher baryon density. The
hybrid star sequence has a maximum mass of 2.1 M_sun. Two- and three-flavor
quark matter phases are found only in gravitationally unstable hybrid star
solutions.Comment: 4 pages, 2 figures, to appear in the proceedings of Quark Matter
2008: 20th International Conference on Ultra-Relativistic Nucleus Nucleus
Collisions (QM 2008), Jaipur, India, 4-10 Feb 200
The azimuth structure of nuclear collisions -- I
We describe azimuth structure commonly associated with elliptic and directed
flow in the context of 2D angular autocorrelations for the purpose of precise
separation of so-called nonflow (mainly minijets) from flow. We extend the
Fourier-transform description of azimuth structure to include power spectra and
autocorrelations related by the Wiener-Khintchine theorem. We analyze several
examples of conventional flow analysis in that context and question the
relevance of reaction plane estimation to flow analysis. We introduce the 2D
angular autocorrelation with examples from data analysis and describe a
simulation exercise which demonstrates precise separation of flow and nonflow
using the 2D autocorrelation method. We show that an alternative correlation
measure based on Pearson's normalized covariance provides a more intuitive
measure of azimuth structure.Comment: 27 pages, 12 figure
Extreme wet conditions coincident with Bronze Age abandonment of upland areas in Britain
Abandonment of farming systems on upland areas in southwest Britain during the Late Bronze Age – some 3000 years ago – is widely considered a ‘classic’ demonstration of the impact of deteriorating climate on the vulnerability of populations in such marginal environments. Here we test the hypothesis that climate change drove the abandonment of upland areas by developing new chronologies for human activity on upland areas during the Bronze Age across southwest Britain (Dartmoor, Exmoor and Bodmin Moor). We find Bronze Age activity in these areas spanned 3900–2950 calendar years ago with abandonment by 2900 calendar years ago. Holocene Irish bog and lake oak tree populations provide evidence of major shifts in hydroclimate across western Britain and Ireland, coincident with ice rafted debris layers recognized in North Atlantic marine sediments, indicating significant changes in the latitude and intensity of zonal atmospheric circulation across the region. We observe abandonment of upland areas in southwest Britain coinciding with a sustained period of extreme wet conditions that commenced 3100 calendar years ago. Our results are consistent with the view that climate change increased the vulnerability of these early farming communities and led to a less intensive use of such marginal environments across Britain
The Chemical Compositions of the Type II Cepheids -- The BL Her and W Vir Variables
Abundance analyses from high-resolution optical spectra are presented for 19
Type II Cepheids in the Galactic field. The sample includes both short-period
(BL Her) and long-period (W Vir) stars. This is the first extensive abundance
analysis of these variables. The C, N, and O abundances with similar spreads
for the BL Her and W Vir show evidence for an atmosphere contaminated with
-process and CN-cycling products. A notable anomaly of the BL Her
stars is an overabundance of Na by a factor of about five relative to their
presumed initial abundances. This overabundance is not seen in the W Vir stars.
The abundance anomalies running from mild to extreme in W Vir stars but not
seen in the BL Her stars are attributed to dust-gas separation that provides an
atmosphere deficient in elements of high condensation temperature, notably Al,
Ca, Sc, Ti, and -process elements. Such anomalies have previously been seen
among RV Tau stars which represent a long-period extension of the variability
enjoyed by the Type II Cepheids. Comments are offered on how the contrasting
abundance anomalies of BL Her and W Vir stars may be explained in terms of the
stars' evolution from the blue horizontal branch.Comment: 41 pages including 11 figures and 4 tables; Accepted for publication
in Ap
Caltech Faint Field Galaxy Redshift Survey IX: Source detection and photometry in the Hubble Deep Field Region
Detection and photometry of sources in the U_n, G, R, and K_s bands in a 9x9
arcmin^2 region of the sky, centered on the Hubble Deep Field, are described.
The data permit construction of complete photometric catalogs to roughly
U_n=25, G=26, R=25.5 and K_s=20 mag, and significant photometric measurements
somewhat fainter. The galaxy number density is 1.3x10^5 deg^{-2} to R=25.0 mag.
Galaxy number counts have slopes dlog N/dm=0.42, 0.33, 0.27 and 0.31 in the
U_n, G, R and K_s bands, consistent with previous studies and the trend that
fainter galaxies are, on average, bluer. Galaxy catalogs selected in the R and
K_s bands are presented, containing 3607 and 488 sources, in field areas of
74.8 and 59.4 arcmin^2, to R=25.5 and and K_s=20 mag.Comment: Accepted for publication in ApJS; some tables and slightly nicer
figures available at http://www.sns.ias.edu/~hogg/deep
- …