78 research outputs found

    Many-body effects in nonlinear optical responses of 2D layered semiconductors

    Get PDF
    We performed ultrafast degenerate pump-probe spectroscopy on monolayer WSe2 near its exciton resonance. The observed differential reflectance signals exhibit signatures of strong many-body interactions including the exciton-exciton interaction and free carrier induced band gap renormalization. The exciton-exciton interaction results in a resonance blue shift which lasts for the exciton lifetime (several ps), while the band gap renormalization manifests as a resonance red shift with several tens ps lifetime. Our model based on the many-body interactions for the nonlinear optical susceptibility fits well the experimental observations. The power dependence of the spectra shows that with the increase of pump power, the exciton population increases linearly and then saturates, while the free carrier density increases superlinearly, implying that exciton Auger recombination could be the origin of these free carriers. Our model demonstrates a simple but efficient method for quantitatively analyzing the spectra, and indicates the important role of Coulomb interactions in nonlinear optical responses of such 2D materials

    Electrical Control of Two-Dimensional Neutral and Charged Excitons in a Monolayer Semiconductor

    Get PDF
    Monolayer group VI transition metal dichalcogenides have recently emerged as semiconducting alternatives to graphene in which the true two-dimensionality (2D) is expected to illuminate new semiconducting physics. Here we investigate excitons and trions (their singly charged counterparts) which have thus far been challenging to generate and control in the ultimate 2D limit. Utilizing high quality monolayer molybdenum diselenide (MoSe2), we report the unambiguous observation and electrostatic tunability of charging effects in positively charged (X+), neutral (Xo), and negatively charged (X-) excitons in field effect transistors via photoluminescence. The trion charging energy is large (30 meV), enhanced by strong confinement and heavy effective masses, while the linewidth is narrow (5 meV) at temperatures below 55 K. This is greater spectral contrast than in any known quasi-2D system. We also find the charging energies for X+ and X- to be nearly identical implying the same effective mass for electrons and holes.Comment: 11 pages main text with 4 figures + 7 pages supplemental material

    Quantum spin Hall edge states and interlayer coupling in twisted-bilayer WTe2_2

    Full text link
    The quantum spin Hall (QSH) effect, characterized by topologically protected spin-polarized edge states, was recently demonstrated in monolayers of the transition metal dichalcogenide (TMD) WTe2_2. However, the robustness of this topological protection remains largely unexplored in van der Waals heterostructures containing one or more layers of a QSH insulator. In this work, we use scanning tunneling microscopy and spectroscopy (STM/STS) to explore the topological nature of twisted bilayer (tBL) WTe2_2 which is produce from folded monolayers, as well as, tear-and-stack fabrication. At the tBL bilayer edge, we observe the characteristic spectroscopic signature of the QSH edge state that is absent in topologically trivial as-grown bilayer. For small twist angles, a rectangular moir\'e pattern develops, which results in local modifications of the band structure. Using first principles calculations, we quantify the interactions in tBL WTe2_2 and its topological edge states as function of interlayer distance and conclude that it is possible to tune the topology of WTe2_2 bilayers via the twist angle as well as interlayer interactions
    • …
    corecore