3 research outputs found

    Riverine Export of Aged Carbon Driven by Flow Path Depth and Residence Time

    No full text
    The flux of terrestrial C to rivers has increased relative to preindustrial levels, a fraction of which is aged dissolved organic C (DOC). In rivers, C is stored in sediments, exported to the ocean, or (bio)­chemically processed and released as CO<sub>2</sub>. Disturbance changes land cover and hydrology, shifting potential sources and processing of DOC. To investigate the likely sources of aged DOC, we analyzed radiocarbon ages, chemical, and spectral properties of DOC and major ions from 19 rivers draining the coterminous U.S. and Arctic. DOC optics indicated that the majority is exported as aromatic, high molecular weight, modern molecules while aged DOC tended to consist of smaller, microbial degradation products. Aged DOC exports, observed regularly in arid basins and during base flow in arctic rivers, are associated with higher proportion of mineral weathering products, suggesting deeper flows paths. These patterns also indicate potential for production of microbial byproducts as DOC ages in soil and water with longer periods of time between production and transport. Thus, changes in hydrology associated with landscape alteration (e.g., tilling or shifting climates) that can result in deeper flow paths or longer residence times will likely lead to a greater proportion of aged carbon in riverine exports

    Fates of Terrigenous Dissolved Organic Carbon in the Gulf of Maine

    No full text
    A significant amount of organic carbon is transported in dissolved form from soils to coastal oceans via inland water systems, bridging land and ocean carbon reservoirs. However, it has been discovered that the presence of terrigenous dissolved organic carbon (tDOC) in oceans is relatively limited. Therefore, understanding the fates of tDOC in coastal oceans is essential to account for carbon sequestration through land ecosystems and ensure accurate regional carbon budgeting. In this study, we developed a state-of-the-art modeling approach by coupling a land-to-ocean tDOC flux simulation model and a coastal tDOC tracking model to determine the potential fates of tDOC exported from three primary drainage basins in the Gulf of Maine (GoM). According to our findings, over half a year in the GoM, 56.4% of tDOC was mineralized. Biomineralization was responsible for 90% of that amount, with the remainder attributed to photomineralization. Additionally, 37% of the tDOC remained suspended in the GoM, and 6.6% was buried in the marine sediment

    Organic Carbon Burial in Lakes and Reservoirs of the Conterminous United States

    No full text
    Organic carbon (OC) burial in lacustrine sediments represents an important sink in the global carbon cycle; however, large-scale OC burial rates are poorly constrained, primarily because of the sparseness of available data sets. Here we present an analysis of OC burial rates in water bodies of the conterminous U.S. (CONUS) that takes advantage of recently developed national-scale data sets on reservoir sedimentation rates, sediment OC concentrations, lake OC burial rates, and water body distributions. We relate these data to basin characteristics and land use in a geostatistical analysis to develop an empirical model of OC burial in water bodies of the CONUS. Our results indicate that CONUS water bodies sequester 20.8 (95% CI: 9.4–65.8) Tg C yr<sup>–1</sup>, and spatial patterns in OC burial are strongly influenced by water body type, size, and abundance; land use; and soil and vegetation characteristics in surrounding areas. Carbon burial is greatest in the central and southeastern regions of the CONUS, where cultivation and an abundance of small water bodies enhance accumulation of sediment and OC in aquatic environments
    corecore