10 research outputs found

    Thermographic imaging in sports and exercise medicine: a Delphi study and consensus statement on the measurement of human skin temperature

    Get PDF
    The importance of using infrared thermography (IRT) to assess skin temperature (tsk) is increasing in clinical settings. Recently, its use has been increasing in sports and exercise medicine; however, no consensus guideline exists to address the methods for collecting data in such situations. The aim of this study was to develop a checklist for the collection of tsk using IRT in sports and exercise medicine. We carried out a Delphi study to set a checklist based on consensus agreement from leading experts in the field. Panelists (n = 24) representing the areas of sport science (n = 8; 33%), physiology (n = 7; 29%), physiotherapy (n = 3; 13%) and medicine (n = 6; 25%), from 13 different countries completed the Delphi process. An initial list of 16 points was proposed which was rated and commented on by panelists in three rounds of anonymous surveys following a standard Delphi procedure. The panel reached consensus on 15 items which encompassed the participants’ demographic information, camera/room or environment setup and recording/analysis of tsk using IRT. The results of the Delphi produced the checklist entitled “Thermographic Imaging in Sports and Exercise Medicine (TISEM)” which is a proposal to standardize the collection and analysis of tsk data using IRT. It is intended that the TISEM can also be applied to evaluate bias in thermographic studies and to guide practitioners in the use of this technique

    Synthesis of 2,6-<i>trans</i>-Tetrahydropyrans Using a Palladium-Catalyzed Oxidative Heck Redox-Relay Strategy

    No full text
    The C-aryl-tetrahydropyran motif is prevalent in nature in a number of natural products with biological activity; however, this challenging architecture still requires novel synthetic approaches. We demonstrate the application of a stereoselective Heck redox-relay strategy for the synthesis of functionalized 2,6-trans-tetrahydropyrans in excellent selectivity in a single step from an enantiopure dihydropyranyl alcohol, proceeding through a novel exo-cyclic migration. The strategy has also been applied to the total synthesis of a trans-epimer of the natural product centrolobine in excellent yield and stereoselectivity

    Time and events associated with the protocol utilized herein.

    No full text
    <p>On what is termed as Day 1 (i.e., PRE), participants’ baseline right knee range of motion (i.e., flexibility), pressure-to-pain threshold in the right <i>vastus lateralis</i> (i.e., muscle soreness), and peak isokinetic right knee extensor torque (Biodex) values were established. In addition, venipuncture and a <i>vastus lateralis</i> biopsy of the left leg was performed for subsequent analyses. Finally, 1-RM back squat values were established for determination of training loads. Participants then reported to the laboratory exactly 1 week later (i.e. Day 2; POST1) and performed 10 sets of 5 reps of the back squat at 80% of their established 1-RM. This was immediately followed by randomization to either the external pneumatic compression (EPC) or sham treatment group. According to group assignment, immediately following resistance training, participants were treated for 1 h. 1 h following treatment a second biopsy of the left <i>vastus lateralis</i> was performed. On the next 2 consecutive days (Day 3 and 4) participants completed the same resistance training followed by respective treatment protocol. On these days, venipuncture and muscle soreness and flexibility assessments were performed prior to resistance training. On the next 2 consecutive days (Days 5–6) venipuncture and the muscle soreness and flexibility assessments were performed and were followed by treatment according to group assignment (no resistance training was performed). Finally, on Day 7 (i.e., POST2) participants reported to the lab for venipuncture and the muscle soreness and flexibility assessments. Thereafter, a third biopsy of the left <i>vastus lateralis</i> was performed and peak isokinetic right knee extensor torque was measured.</p

    Protein expression patterns related to inflammatory and oxidative stress signaling.

    No full text
    <p>At baseline (PRE), 1 h following a heavy back squat resistance training session and treatment with EPC or sham (POST1) and 24 h following 3 consecutive days of heavy back squat resistance training session and treatment with EPC or sham and 2 additional, consecutive days of treatment with EPC or sham (POST2). Western blot analysis of protein concentrations in <i>vastus lateralis</i> biopsy samples are presented for A) pan-nuclear factor kappa-light change-enhancer of activated B cells (pan-NF-κB), B) pan-nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (pan-IκBα), C) catalase, D) superoxide dismutase 2 (SOD2), and E) 4-hydroxynonenal (4HNE). Representative images and respective Ponceau images for all proteins are presented in Panel F. Protein expression data are expressed as fold-change from PRE levels (mean ± standard error) and effect sizes for change from PRE are presented as d ± 95% confidence interval. Effect sizes were calculated as mean change from PRE in the EPC group less mean change from PRE in the sham group divided by the pooled standard deviation for each respective time point. Repeated measures MANOVA was performed with PRE values as a covariate and an α ≤ 0.05 required for statistical significance. All statistics were performed using the absolute expression values. Main effects are presented as emphasized p-values. <i>Post-hoc</i> testing for between time point differences (independent of group) were performed using Student’s paired t-tests and an α ≤ 0.025 was required for statistical significance. *, time point (collapsed across groups) significantly different from PRE.</p

    Protein expression patterns related to anabolic signaling.

    No full text
    <p>At baseline (PRE), 1 h following a heavy back squat resistance training session and treatment with EPC or sham (POST1) and 24 h following 3 consecutive days of heavy back squat resistance training session and treatment with EPC or sham and 2 additional, consecutive days of treatment with EPC or sham (POST2) protein expression patterns related to anabolic signaling were probed. Western blot analysis of protein concentrations in <i>vastus lateralis</i> biopsy samples are presented for A) insulin-like growth factor (IGF-1), B) phosphorylated 4E-binding protein 1 (p-4EBP1), and C) phosphorylated p-70 S6 kinase (p-p70s6k). Representative images and respective Ponceau images for all proteins are presented in Panel D. Protein expression data are expressed as fold-change from PRE levels (mean ± standard error) and effect sizes for change from PRE are presented as d ± 95% confidence interval. Effect sizes were calculated as mean change from PRE in the EPC group less mean change from PRE in the sham group divided by the pooled standard deviation for each respective time point. Repeated measures MANOVA was performed with PRE values as a covariate and an α ≤ 0.05 required for statistical significance. All statistics were performed using the absolute expression values. Main effects of time are presented as emphasized p-values. <i>Post-hoc</i> testing for a main effect of time was performed using Student’s paired t-tests and an α ≤ 0.025 was required for statistical significance.</p

    Protein expression patterns related to proteolytic signaling.

    No full text
    <p>At baseline (PRE), 1 h following a heavy back squat resistance training session and treatment with EPC or sham (POST1) and 24 h following 3 consecutive days of heavy back squat resistance training session and treatment with EPC or sham and 2 additional, consecutive days of treatment with EPC or sham (POST2) protein expression patterns related to proteolytic signaling were probed. Western blot analysis of protein concentrations in <i>vastus lateralis</i> biopsy samples are presented in panels A) 20S core proteasome protein, B) atrogin-1, C) Ubiquitin (Ub) monomer protein, D) poly-ubiqutinated (poly-Ub) proteins, and E) MuRF-1. Representative images and respective Ponceau images for all proteins are presented in Panel F. Protein expression data are expressed as fold-change from PRE levels (mean ± standard error) and effect sizes for change from PRE are presented as d ± 95% confidence interval. Effect sizes were calculated as mean change from PRE in the EPC group less mean change from PRE in the sham group divided by the pooled standard deviation for each respective time point. Repeated measures MANOVA was performed with PRE values as a covariate and an α ≤ 0.05 required for statistical significance. All statistics were performed using the absolute expression values. Main effects and/or group*time interactions are presented as emphasized p-values. <i>Post-hoc</i> testing for between time point differences (independent of group) and between group differences at the POST1 and POST2 time points were performed using Student’s paired t-tests and an α ≤ 0.025 was required for statistical significance. ϕ, significantly different from sham at same time point.</p

    Humoral markers of muscle damage and inflammation.

    No full text
    <p>Creatine kinase (CK; Panel A), C-reactive protein (CRP; Panel B) and interleukin-6 (IL-6; Panel C) concentrations in the blood were measured at baseline (PRE/Day1) and on Days 3–7 of the protocol. Data are presented as mean respective concentrations ± standard error. Effect sizes were calculated as mean change from PRE in the EPC group less mean change from PRE in the sham group divided by the pooled standard deviation for each respective time point. Repeated measures MANOVA was performed with PRE values as a covariate and an α ≤ 0.05 required for statistical significance. Main effects of time and/or group are presented as emphasized p-values. <i>Post-hoc</i> testing for a main effect of time was performed using Student’s paired t-tests and an α ≤ 0.01 was required for statistical significance. *, time point (collapsed across groups) significantly different from PRE.</p
    corecore