8 research outputs found

    Catalytic enantioselective syn hydration of enones in water using a DNA-based catalyst

    Get PDF
    The enantioselective addition of water to olefins in an aqueous environment is a common transformation in biological systems, but was beyond the ability of synthetic chemists. Here, we present the first examples of a non-enzymatic catalytic enantioselective hydration of enones, for which we used a catalyst that comprises a copper complex, based on an achiral ligand, non-covalently bound to (deoxy)ribonucleic acid, which is the only source of chirality present under the reaction conditions. The chiral β-hydroxy ketone product was obtained in up to 82% enantiomeric excess. Deuterium-labelling studies demonstrated that the reaction is diastereospecific, with only the syn hydration product formed. So far, this diastereospecific and enantioselective reaction had no equivalent in conventional homogeneous catalysis

    Efficient synthesis of calix[6]tmpa: a new calix[6]azacryptand with unique conformational and host-guest properties.

    No full text
    A new C(3v)-symmetrical calix[6]azacryptand, that is, calix[6]tmpa (11), was synthesized by efficient [1+1] macrocyclization reactions. Remarkably, both linear and convergent synthetic strategies that were applied lead to equally good overall yields. Calix[6]tmpa behaves as a single proton sponge and appeared reluctant to undergo polyprotonation, unlike classical tris(2-pyridylmethyl)amine (tmpa) derivatives. It also acts as a good host for ammonium ions. Interestingly, it strongly binds a sodium ion and a neutral guest molecule, such as a urea, an amide, or an alcohol, in a cooperative way. A (1)H NMR study indicated that the ligand, as well as its complexes, adopt a major flattened cone conformation that is the opposite of that observed with the previously reported calix[6]cryptands. Characterization of the monoprotonated derivative 11H(+) by X-ray diffraction also revealed the presence of a 1,3-alternate conformation, which is the first example of its kind in the calix[6]arene family. This conformer is probably also present in solution as a minor species. The important covalent constraint induced by the polyaromatic tmpa cap on the calixarene skeleton, and conversely from the calix core onto the tmpa moiety, is the likely basis for the unique conformational and chemical properties of this host.Journal ArticleFLWINinfo:eu-repo/semantics/publishe

    Ipso-Nitration of calix[6]azacryptands: intriguing effect of the small rim capping pattern on the large rim substitution selectivity.

    No full text
    The ipso-nitration of calix[6]arene-based molecular receptors is a important synthetic pathway for the elaboration of more sophisticated systems. This reaction has been studied for a variety of capped calixarenes, and a general trend for the regioselective nitration of three aromatic units out of six in moderate to high yield has been observed. This selectivity is, in part, attributed to the electronic connection between the protonated cap at the small rim and the reactive sites at the large rim. In addition, this work highlights the fact that subtle conformational properties can drastically influence the outcome of this reaction.Journal ArticleResearch Support, Non-U.S. Gov'tSCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Biomimetic and self-assembled calix[6]arene-based receptors for neutral molecules.

    No full text
    The selective recognition of substrates or cofactors is a key feature of biological processes. It involves coordination bonds, hydrogen bonding, charge/charge and charge/dipole interactions. In this Perspective, we describe how the calix[6]arene core can be functionalized and shaped to act as a biomimetic molecular receptor. The strategy relies on the selective introduction of three amino arms on alternate phenolic positions. Upon metal ion binding or self-assembly via multiple ion-pairing and H-bonding, these amino arms are projected towards each other, thus closing the calixarene small rim. The resulting cone-shaped receptors act as molecular funnels displaying high affinities for a variety of neutral guests. Their hosting properties can be finely tuned by changing the small or the large rim or by allosteric effects. Induced-fit processes are also often observed as the cavity can expand for large guests or shrink for small ones. Hence, the different families of calix[6]arene-based receptors presented here highlight the importance of having a flexible and polarized hydrophobic structure to accommodate the guest.Journal ArticleResearch Support, Non-U.S. Gov'tReviewArticle faisant la couvertureSCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore