2 research outputs found

    Design of Substituted Imidazolidinylpiperidinylbenzoic Acids as Chemokine Receptor 5 Antagonists: Potent Inhibitors of R5 HIV‑1 Replication

    No full text
    The redesign of the previously reported thiophene-3-yl-methyl urea series, as a result of potential cardiotoxicity, was successfully accomplished, resulting in the identification of a novel potent series of CCR5 antagonists containing the imidazolidinylpiperidinyl scaffold. The main redesign criteria were to reduce the number of rotatable bonds and to maintain an acceptable lipophilicity to mitigate hERG inhibition. The structure–activity relationship (SAR) that was developed was used to identify compounds with the best pharmacological profile to inhibit HIV-1. As a result, five advanced compounds, <b>6d</b>, <b>6e</b>, <b>6i</b>, <b>6h</b>, and <b>6k</b>, were further evaluated for receptor selectivity, antiviral activity against CCR5 using (R5) HIV-1 clinical isolates, and in vitro and in vivo safety. On the basis of these results, <b>6d</b> and <b>6h</b> were selected for further development

    Discovery of Aryl Sulfonamides as Isoform-Selective Inhibitors of Na<sub>V</sub>1.7 with Efficacy in Rodent Pain Models

    No full text
    We report on a novel series of aryl sulfonamides that act as nanomolar potent, isoform-selective inhibitors of the human sodium channel hNa<sub>V</sub>1.7. The optimization of these inhibitors is described. We aimed to improve potency against hNa<sub>V</sub>1.7 while minimizing off-target safety concerns and generated compound <b>3</b>. This agent displayed significant analgesic effects in rodent models of acute and inflammatory pain and demonstrated that binding to the voltage sensor domain 4 site of Na<sub>V</sub>1.7 leads to an analgesic effect <i>in vivo</i>. Our findings corroborate the importance of hNa<sub>V</sub>1.7 as a drug target for the treatment of pain
    corecore