28 research outputs found

    Middle East respiratory syndrome coronavirus specific antibodies in naturally exposed Israeli llamas, alpacas and camels

    Get PDF
    Thus far, no human MERS-CoV infections have been reported from Israel. Evidence for the circulation of MERS-CoV in dromedaries has been reported from almost all the countries of the Middle East, except Israel. Therefore, we aimed to analyze MERS-CoV infection in Israeli camelids, sampled between 2012 and 2017. A total of 411 camels, 102 alpacas and 19 llamas' sera were tested for the presence of antibodies to MERS-CoV. Our findings indicate a lower MERS-CoV seropositivity among Israeli dromedaries than in the surrounding countries, and for the first time naturally infected llamas were identified. In addition, nasal swabs of 661 camels, alpacas and lamas, obtained from January 2015 to December 2017, were tested for the presence of MERS-CoV RNA. All nasal swabs were negative, indicating no evidence for MERS-CoV active circulation in these camelids during that time period

    EPHA2 Is Associated with Age-Related Cortical Cataract in Mice and Humans

    Get PDF
    Age-related cataract is a major cause of blindness worldwide, and cortical cataract is the second most prevalent type of age-related cataract. Although a significant fraction of age-related cataract is heritable, the genetic basis remains to be elucidated. We report that homozygous deletion of Epha2 in two independent strains of mice developed progressive cortical cataract. Retroillumination revealed development of cortical vacuoles at one month of age; visible cataract appeared around three months, which progressed to mature cataract by six months. EPHA2 protein expression in the lens is spatially and temporally regulated. It is low in anterior epithelial cells, upregulated as the cells enter differentiation at the equator, strongly expressed in the cortical fiber cells, but absent in the nuclei. Deletion of Epha2 caused a significant increase in the expression of HSP25 (murine homologue of human HSP27) before the onset of cataract. The overexpressed HSP25 was in an underphosphorylated form, indicating excessive cellular stress and protein misfolding. The orthologous human EPHA2 gene on chromosome 1p36 was tested in three independent worldwide Caucasian populations for allelic association with cortical cataract. Common variants in EPHA2 were found that showed significant association with cortical cataract, and rs6678616 was the most significant in meta-analyses. In addition, we sequenced exons of EPHA2 in linked families and identified a new missense mutation, Arg721Gln, in the protein kinase domain that significantly alters EPHA2 functions in cellular and biochemical assays. Thus, converging evidence from humans and mice suggests that EPHA2 is important in maintaining lens clarity with age

    An Adjustable Magnetic Prism Carrier for Strabismus Evaluation

    No full text
    "The analysis and quantitation of strabismus can be challenging to examiner and patient, especially when the deviation is large or complex. This can be due to the difficulty of holding multiple prisms in proper alignment and also the difficulty of conducting trials of prisms during real life use for prolonged periods. Most trial frame sets have limits on prism size. We have designed a continuously adjustable, head mounted magnetic prism carrier (MPC) which allows for placement of any strength prism in proper alignment to facilitate strabismus evaluation.

    An Adjustable Magnetic Prism Carrier for Strabismus Evaluation

    No full text

    A Novel Hand Held Instrument for Quantitating Diplopic Visual Fields

    No full text
    Diplopia assessment is critical in evaluating conditions including: thyroid associated orbitopathy (TAO), orbital trauma, and idiopathic orbital inflammation (IOI) among others. Currently diplopia is assessed using: qualtitative clinical assessment, prism quantitatition of deviation, and techniques like Goldmann perimeters which though accurate, require specialized unavailable instruments. We developed a simple hand-held instrument (diplopometer) that allows reproducible quantitative assessment of the diplopic field. It has the resolution and reproducibility of the most sophisticated instruments

    Numerical Analysis Results of Debonding Damage Effects for an SHM System Application on a Typical Composite Beam

    No full text
    In the aeronautical field, the damage that occurs to a carbon-fibre-reinforced polymer (CFRP) structure analysis is a crucial point for further improving its capability and performance. In the current the state of the art, in fact, many issues are linked to the certification process more than to technological aspects. For the sake of clarity, it should be added that regulations call for technological solutions that are invasive (in terms of weight and manufacturing costs) or exploit technologies that are not fully mature. Thus, the truth is in between the above statements. One of the possible solutions to bypass this issue is the assessment of a structural health monitoring system (SHM) that is sufficiently reliable to provide a full-state representation of the structure, automatically, perhaps in real-time, with a minimum intervention of specialized technicians, and that can raise an alert for safe maintenance whenever necessary. Among the different systems that have been proposed in the scientific and technological literature, SHM systems based on strain acquisitions seem very promising: they deduce the presence of flaws by analysing the variations of the intimate response of the structure. In this context, the SHM using fibre optics, supported by a dedicated algorithm, seems to be able to translate the effects of the damage reading the strain field. This means that is necessary to have a full comprehension of the flaws’ effects in terms of strain variation to better formulate a strategy aimed at highlighting these distortions. It should be remarked that each type of damage is distinct; imperfections of the bonding line are herein targeted since the quality of the latter is of paramount importance for ensuring the correct behaviour of the referred structure. This presents paper focuses on a deep investigation on the strain field peculiarities that arise after the imposition of irregularities in the adhesive region. The aim is to explore the damage dimension versus its effect on the strain map, especially when bonding connects different parts of a complex composite beam. By means of finite element method applied on a typical aeronautical beam, a parametric numerical simulation was performed in order to establish the influence of a debonding dimension on a reference strain map. This work provides evidence that these effects on strain flaw decrease the distancing itself of the damage. The knowledge of these effects can be highly helpful during the design of a preliminary phase of an SHM system in order to choose the most suitable sensor in terms of reading sensitivity error, the number to be used, and their location

    De-Bonding Numerical Characterization and Detection in Aeronautic Multi-Element Spars

    No full text
    Structural health monitoring has multifold aims. Concerning composite structures, the main objectives are perhaps reducing costs by shifting from scheduled to on-demand maintenance and reducing weight by removing redundant precautions as the insertion of chicken fasteners to for ensuring joint safety in cases of bonding layer fail. Adhesion defects may be classified along different types, for instance distinguishing between glue deficiency or de-bonding. This paper deals with a preliminary numerical characterization of adhesive layer imperfections on a representative aircraft component. The multipart composite spar is made of two plates and two corresponding C-beams, bonded together to form an almost squared boxed section beam. A numerical test campaign was devoted to extract relevant information from different defect layouts and to try to assess some parameters that could describe their peculiarities. A focus was then given to macroscopic evidence of fault effects behavior, as localization, reciprocal interference, impact on structural response, and so on. A proprietary code was finally used to retrieve the presence and size of the imperfections, correlating numerical outcomes with estimations. Activities were performed along OPTICOMS, a European project funded within the Clean Sky 2 Joint Technology Initiative (JTI)

    Hypoxia Inducible Factor 1A Supports a Pro-Fibrotic Phenotype Loop in Idiopathic Pulmonary Fibrosis

    No full text
    Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with poor prognosis. The IPF-conditioned matrix (IPF-CM) system enables the study of matrix–fibroblast interplay. While effective at slowing fibrosis, nintedanib has limitations and the mechanism is not fully elucidated. In the current work, we explored the underlying signaling pathways and characterized nintedanib involvement in the IPF-CM fibrotic process. Results were validated using IPF patient samples and bleomycin-treated animals with/without oral and inhaled nintedanib. IPF-derived primary human lung fibroblasts (HLFs) were cultured on Matrigel and then cleared using NH4OH, creating the IPF-CM. Normal HLF-CM served as control. RNA-sequencing, PCR and western-blots were performed. HIF1α targets were evaluated by immunohistochemistry in bleomycin-treated rats with/without nintedanib and in patient samples with IPF. HLFs cultured on IPF-CM showed over-expression of ‘HIF1α signaling pathway’ (KEGG, p < 0.0001), with emphasis on SERPINE1 (PAI-1), VEGFA and TIMP1. IPF patient samples showed high HIF1α staining, especially in established fibrous tissue. PAI-1 was overexpressed, mainly in alveolar macrophages. Nintedanib completely reduced HIF1α upregulation in the IPF-CM and rat-bleomycin models. IPF-HLFs alter the extracellular matrix, thus creating a matrix that further propagates an IPF-like phenotype in normal HLFs. This pro-fibrotic loop includes the HIF1α pathway, which can be blocked by nintedanib
    corecore