399 research outputs found

    Pet Food Protector

    Get PDF
    food consumption while keeping each pet separate from the others. The device will detect a certain pet, using a transmitter and receiver that would be on the collar of the pet and in the device itself, and enable them to access their specific food by way of an opening and closing lid. If the pet leaves the area, the food is no longer accessible. The device will also track the amount of food consumed and regulate how much food should be consumed in a given amount of time. This will allow owners to feed their pets without worrying about overeating or a pet consuming the wrong food

    MicroFedML: Privacy Preserving Federated Learning for Small Weights

    Get PDF
    Secure aggregation on user private data with the aid of an entrusted server provides strong privacy guarantees and has been well-studied in the context of privacy-preserving federated learning. An important problem in privacy-preserving federated learning with user constrained computation and wireless network resources is the computation and communication overhead which wastes bandwidth, increases training time, and can even impacts the model accuracy if many users drop out. The seminal work of Bonawitz et al. and the work of Bell et al. have constructed secure aggregation protocols for a very large number of users which handle dropout users in a federated learning setting. However, these works suffer from high round complexity (referred to as the number of times the users exchange messages with the server) and overhead in every training iteration. In this work, we propose and implement MicroFedML, a new secure aggregation system with lower round complexity and computation overhead per training iteration. MicroFedML reduces the computational burden by at least 100 orders of magnitude for 500 users (or more depending on the number of users) and the message size by 50 times compared to prior work. Our system is suitable and performs its best when the input domain is not too large, i.e., small model weights. Notable examples include gradient sparsification, quantization, and weight regularization in federated learning

    Coccolithophore counts from polarized microscopy birefringence measurements of samples collected in the Northwest Atlantic during R/V Endeavor cruise EN616 in July 2018

    Get PDF
    Dataset: Coccolithophore birefringence from polarized microscopyThis dataset presents polarized microscopy-derived concentration data for coccolithophores and detached coccoliths in samples collected from stations in the Northwest Atlantic during R/V Endeavor cruise EN616 in July 2018. Counts are based on image analysis of dark-field, cross-polarized views of filtered particulate matter. These counts take advantage of the birefringence property of calcium carbonate (particulate inorganic carbon) that it rotates the plane of linearly polarized incident light by 90 degrees. Incident light directed upwards, towards the microscope slide, is polarized 90 degrees with a linear polarizer. Particles are viewed from above the slide, through a second, linear polarizer filter held between the microscope stage and the camera which only accepts light that is polarized orthogonal to the lower polarizer. Calcium carbonate particles in the beam appear as bright dots of light. Image analysis software then analyzes the pattern of birefringence and enumerates only those particles with size and shape of coccolithophores or detached coccoliths. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/887863NSF Division of Ocean Sciences (NSF OCE) OCE-163574

    Tight regulation of unstructured proteins: from transcript synthesis to protein degradation

    Get PDF
    Altered abundance of several intrinsically unstructured proteins ( IUPs) has been associated with perturbed cellular signaling that may lead to pathological conditions such as cancer. Therefore, it is important to understand how cells precisely regulate the availability of IUPs. We observed that regulation of transcript clearance, proteolytic degradation, and translational rate contribute to controlling the abundance of IUPs, some of which are present in low amounts and for short periods of time. Abundant phosphorylation and low stochasticity in transcription and translation indicate that the availability of IUPs can be finely tuned. Fidelity in signaling may require that most IUPs be available in appropriate amounts and not present longer than needed.Royal Society; MRC Special Training Fellowship; Medical Research Council [MC_U105161047, MC_U105185859, G0600158]info:eu-repo/semantics/publishedVersio

    Melanoma cells break down LPA to establish local gradients that drive chemotactic dispersal.

    Get PDF
    The high mortality of melanoma is caused by rapid spread of cancer cells, which occurs unusually early in tumour evolution. Unlike most solid tumours, thickness rather than cytological markers or differentiation is the best guide to metastatic potential. Multiple stimuli that drive melanoma cell migration have been described, but it is not clear which are responsible for invasion, nor if chemotactic gradients exist in real tumours. In a chamber-based assay for melanoma dispersal, we find that cells migrate efficiently away from one another, even in initially homogeneous medium. This dispersal is driven by positive chemotaxis rather than chemorepulsion or contact inhibition. The principal chemoattractant, unexpectedly active across all tumour stages, is the lipid agonist lysophosphatidic acid (LPA) acting through the LPA receptor LPAR1. LPA induces chemotaxis of remarkable accuracy, and is both necessary and sufficient for chemotaxis and invasion in 2-D and 3-D assays. Growth factors, often described as tumour attractants, cause negligible chemotaxis themselves, but potentiate chemotaxis to LPA. Cells rapidly break down LPA present at substantial levels in culture medium and normal skin to generate outward-facing gradients. We measure LPA gradients across the margins of melanomas in vivo, confirming the physiological importance of our results. We conclude that LPA chemotaxis provides a strong drive for melanoma cells to invade outwards. Cells create their own gradients by acting as a sink, breaking down locally present LPA, and thus forming a gradient that is low in the tumour and high in the surrounding areas. The key step is not acquisition of sensitivity to the chemoattractant, but rather the tumour growing to break down enough LPA to form a gradient. Thus the stimulus that drives cell dispersal is not the presence of LPA itself, but the self-generated, outward-directed gradient
    • …
    corecore