125 research outputs found

    Functionalization of single-walled carbon nanotubes using isotropic plasma treatment: Resonant Raman spectroscopy study

    Get PDF
    Functionalization of single-walled carbon nanotubes sSWNTsd by isotropic plasma treatment was studied using resonant Raman spectroscopy. It was shown that plasma-induced functionalization results in the uniaxial isotropic constriction of the nanotubes but preserves their overall structural integrity. It was demonstrated that NH3 ·H2O and hexamethyldisiloxan plasmas yield various types of conductivity for semiconducting SWNTs

    Functionalization of single-walled carbon nanotubes using isotropic plasma treatment: Resonant Raman spectroscopy study

    Get PDF
    Functionalization of single-walled carbon nanotubes sSWNTsd by isotropic plasma treatment was studied using resonant Raman spectroscopy. It was shown that plasma-induced functionalization results in the uniaxial isotropic constriction of the nanotubes but preserves their overall structural integrity. It was demonstrated that NH3 ·H2O and hexamethyldisiloxan plasmas yield various types of conductivity for semiconducting SWNTs

    Thermal Habitat for RNA Amplification and Accumulation

    Get PDF
    The RNA world scenario posits replication by RNA polymerases. On early Earth, a geophysical setting is required to separate hybridized strands after their replication and to localize them against diffusion. We present a pointed heat source that drives exponential, RNA-catalyzed amplification of short RNA with high efficiency in a confined chamber. While shorter strands were periodically melted by laminar convection, the temperature gradient caused aggregated polymerase molecules to accumulate, protecting them from degradation in hot regions of the chamber. These findings demonstrate a size-selective pathway for autonomous RNA-based replication in a natural non-equilibrium condition

    Plasma coating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites

    Full text link
    Ultrathin films of polystyrene were deposited on the surfaces of carbon nanofibers using a plasma polymerization treatment. A small percent by weight of these surface-coated nanofibers were incorporated into polystyrene to form a polymer nanocomposite. The plasma coating greatly enhanced the dispersion of the nanofibers in the polymer matrix. High-resolution transmission-electron-microscopy (HRTEM) images revealed an extremely thin film of the polymer layer (∼3 nm) at the interface between the nanofiber and matrix. Tensile test results showed considerably increased strength in the coated nanofiber composite while an adverse effect was observed in the uncoated composites; the former exhibited shear yielding due to enhanced interfacial bonding while the latter fractured in a brittle fashion. © 2003 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71001/2/APPLAB-83-25-5301-1.pd

    Stability and magnetically induced heating behavior of lipid-coated Fe3O4 nanoparticles

    Get PDF
    Magnetic nanoparticles that are currently explored for various biomedical applications exhibit a high propensity to minimize total surface energy through aggregation. This study introduces a unique, thermoresponsive nanocomposite design demonstrating substantial colloidal stability of superparamagnetic Fe(3)O(4) nanoparticles (SPIONs) due to a surface-immobilized lipid layer. Lipid coating was accomplished in different buffer systems, pH 7.4, using an equimolar mixture of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and l-α-dipalmitoylphosphatidyl glycerol (DPPG). Particle size and zeta potential were measured by dynamic laser light scattering. Heating behavior within an alternating magnetic field was compared between the commercial MFG-1000 magnetic field generator at 7 mT (1 MHz) and an experimental, laboratory-made magnetic hyperthermia system at 16.6 mT (13.7 MHz). The results revealed that product quality of lipid-coated SPIONs was significantly dependent on the colloidal stability of uncoated SPIONs during the coating process. Greatest stability was achieved at 0.02 mg/mL in citrate buffer (mean diameter = 80.0 ± 1.7 nm; zeta potential = -47.1 ± 2.6 mV). Surface immobilization of an equimolar DPPC/DPPG layer effectively reduced the impact of buffer components on particle aggregation. Most stable suspensions of lipid-coated nanoparticles were obtained at 0.02 mg/mL in citrate buffer (mean diameter = 179.3 ± 13.9 nm; zeta potential = -19.1 ± 2.3 mV). The configuration of the magnetic field generator significantly affected the heating properties of fabricated SPIONs. Heating rates of uncoated nanoparticles were substantially dependent on buffer composition but less influenced by particle concentration. In contrast, thermal behavior of lipid-coated nanoparticles within an alternating magnetic field was less influenced by suspension vehicle but dramatically more sensitive to particle concentration. These results underline the advantages of lipid-coated SPIONs on colloidal stability without compromising magnetically induced hyperthermia properties. Since phospholipids are biocompatible, these unique lipid-coated Fe(3)O(4) nanoparticles offer exciting opportunities as thermoresponsive drug delivery carriers for targeted, stimulus-induced therapeutic interventions. PACS: 7550Mw; 7575Cd; 8185Q

    Plasma deposition of Ultrathin polymer films on carbon nanotubes

    Full text link
    Ultrathin films of pyrrole were deposited on the surfaces of carbon nanotubes using a plasma polymerization treatment. High-resolution electron transmission microscopy images revealed that an extremely thin film of the polymer layer (2 ∼ 7 nm)(2∼7nm) was uniformly deposited on the outer and inner surfaces of the nanotubes. The nanotubes of all sizes exhibited equally uniform ultrathin films, indicating well-dispersed nanotubes in the fluidized bed reactor during the plasma treatment. In particular, the inner wall of the nanotube was also coated with a uniform ultrathin film of only ∼1–3 nm. Time-of-flight secondary ion mass spectroscopy experiments confirmed the highly branched and cross-linked polymer thin films on the carbon nanotubes. The plasma deposition mechanism is discussed in this letter. © 2002 American Institute of Physics.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/71075/2/APPLAB-81-27-5216-1.pd

    Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications

    Get PDF
    In this work, the effect of nanoparticle confinement on the magnetic relaxation of iron oxide (Fe 3 O 4 ) nanoparticles (NP) was investigated by measuring the hyperthermia heating behavior in high frequency alternating magnetic field. Three different Fe 3 O 4 nanoparticle systems having distinct nanoparticle configurations were studied in terms of magnetic hyperthermia heating rate and DC magnetization. All magnetic nanoparticle (MNP) systems were constructed using equivalent~10 nm diameter NP that were structured differently in terms of configuration, physical confinement, and interparticle spacing. The spatial confinement was achieved by embedding the Fe 3 O 4 nanoparticles in the matrices of the polystyrene spheres of 100 nm, while the unconfined was the free Fe 3 O 4 nanoparticles well-dispersed in the liquid via PAA surface coating. Assuming the identical core MNPs in each system, the heating behavior was analyzed in terms of particle freedom (or confinement), interparticle spacing, and magnetic coupling (or dipole-dipole interaction). DC magnetization data were correlated to the heating behavior with different material properties. Analysis of DC magnetization measurements showed deviation from classical Langevin behavior near saturation due to dipole interaction modification of the MNPs resulting in a high magnetic anisotropy. It was found that the Specific Absorption Rate (SAR) of the unconfined nanoparticle systems were significantly higher than those of confined (the MNPs embedded in the polystyrene matrix). This increase of SAR was found to be attributable to high Néel relaxation rate and hysteresis loss of the unconfined MNPs. It was also found that the dipole-dipole interactions can significantly reduce the global magnetic response of the MNPs and thereby decrease the SAR of the nanoparticle systems

    A 50-year record of NOx and SO2 sources in precipitation in the Northern Rocky Mountains, USA

    Get PDF
    Ice-core samples from Upper Fremont Glacier (UFG), Wyoming, were used as proxy records for the chemical composition of atmospheric deposition. Results of analysis of the ice-core samples for stable isotopes of nitrogen (δ15N, ) and sulfur (δ34S, ), as well as and deposition rates from the late-1940s thru the early-1990s, were used to enhance and extend existing National Atmospheric Deposition Program/National Trends Network (NADP/NTN) data in western Wyoming. The most enriched δ34S value in the UFG ice-core samples coincided with snow deposited during the 1980 eruption of Mt. St. Helens, Washington. The remaining δ34S values were similar to the isotopic composition of coal from southern Wyoming. The δ15N values in ice-core samples representing a similar period of snow deposition were negative, ranging from -5.9 to -3.2 ‰ and all fall within the δ15N values expected from vehicle emissions. Ice-core nitrate and sulfate deposition data reflect the sharply increasing U.S. emissions data from 1950 to the mid-1970s
    corecore