9,924 research outputs found

    FABRICATED CUT BEEF PRICES AS LEADING INDICATORS OF FED CATTLE PRICE

    Get PDF
    Temporal relationships are investigated among fabricated cut prices, carcass value, and fed cattle prices. Also, linkages between fed cattle and wholesale beef prices are examined using vector autoregressive (VAR) techniques. Results, using daily prices over the 1980-85 period, suggested that fabricated cut prices and cattle prices are related to the imputed carcass value, carcass quote, and fed cattle prices. In addition, three fabricated cuts dominate as leading indicators of fed cattle prices of most fabricated cut prices. They are strip loin and bottom and top round prices. VAR models outperform the univariate and random-walk models of forecasting ability.Demand and Price Analysis, Livestock Production/Industries,

    \u3cem\u3eChlamydomonas\u3c/em\u3e mutants display reversible deficiencies in flagellar beating and axonemal assembly

    Get PDF
    Axonemal complexes in flagella are largely prepackaged in the cell body. As such, one mutation often results in the absence of the co-assembled components and permanent motility deficiencies. For example, a Chlamydomonas mutant defective in RSP4 in the radial spoke (RS), which is critical for bend propagation, has paralyzed flagella that also lack the paralogue RSP6 and three additional RS proteins. Intriguingly, recent studies showed that several mutant strains contain a mixed population of swimmers and paralyzed cells despite their identical genetic background. Here we report a cause underlying these variations. Two new mutants lacking RSP6 swim processively and other components appear normally assembled in early log phase indicating that, unlike RSP4, this paralogue is dispensable. However, swimmers cannot maintain the typical helical trajectory and reactivated cell models tend to spin. Interestingly the motile fraction and the spokehead content dwindle during stationary phase. These results suggest that (1) intact RS is critical for maintaining the rhythm of oscillatory beating and thus the helical trajectory; (2) assembly of the axonemal complex with subtle defects is less efficient and the inefficiency is accentuated in compromised conditions, leading to reversible dyskinesia. Consistently, several organisms only possess one RSP4/6 gene. Gene duplication in Chlamydomonas enhances RS assembly to maintain optimal motility in various environments

    Probing the (H3-H4)(2) histone tetramer structure using pulsed EPR spectroscopy combined with site-directed spin labelling

    Get PDF
    The (H3-H4)2 histone tetramer forms the central core of nucleosomes and, as such, plays a prominent role in assembly, disassembly and positioning of nucleosomes. Despite its fundamental role in chromatin, the tetramer has received little structural investigation. Here, through the use of pulsed electron-electron double resonance spectroscopy coupled with site-directed spin labelling, we survey the structure of the tetramer in solution. We find that tetramer is structurally more heterogeneous on its own than when sequestered in the octamer or nucleosome. In particular, while the central region including the H3-H3β€² interface retains a structure similar to that observed in nucleosomes, other regions such as the H3 Ξ±N helix display increased structural heterogeneity. Flexibility of the H3 Ξ±N helix in the free tetramer also illustrates the potential for post-translational modifications to alter the structure of this region and mediate interactions with histone chaperones. The approach described here promises to prove a powerful system for investigating the structure of additional assemblies of histones with other important factors in chromatin assembly/fluidity

    Reversible Mode Switching in Y coupled Terahertz Lasers

    Full text link
    Electrically independent terahertz (THz) quantum cascade lasers (QCLs) are optically coupled in a Y configuration. Dual frequency, electronically switchable emission is achieved in one QCL using an aperiodic grating, designed using computer-generated hologram techniques, incorporated directly into the QCL waveguide by focussed ion beam milling. Multi-moded emission around 2.9 THz is inhibited, lasing instead occurring at switchable grating-selected frequencies of 2.88 and 2.92 THz. This photonic control and switching behaviour is selectively and reversibly transferred to the second, unmodified QCL via evanescent mode coupling, without the transfer of the inherent grating losses

    Y coupled terahertz quantum cascade lasers

    Full text link
    Here we demonstrate a Y coupled terahertz (THz) quantum cascade laser (QCL) system. The two THz QCLs working around 2.85 THz are driven by independent electrical pulsers. Total peak THz output power of the Y system, with both arms being driven synchronously, is found to be more than the linear sum of the peak powers from the individual arms; 10.4 mW compared with 9.6 mW (4.7 mW + 4.9 mW). Furthermore, we demonstrate that the emission spectra of this coupled system are significantly different to that of either arm alone, or to the linear combination of their individual spectra.Comment: 9 pages, 3 figure

    Determining the relationship between nanoparticle characteristics and immunotoxicity: key challenges and approaches

    Get PDF
    The growing wealth of information regarding the influence that physicochemical characteristics play on nanoparticle biocompatibility and safety is allowing improved design and rationale for their development and preclinical assessment. Accurate and appropriate measurement of these characteristics accompanied by informed toxicological assessment is a necessity for the development of safe and effective nanomedicines. While particle type, formulation and mode of administration dictate the individual causes for concern through development, the benefits of nanoformulation for treatment of the diseased state are great. Here we have proposed certain considerations and suggestions, which could lead to better-informed preclinical assessment of nanomaterials for nanomedicine, as well as how this information can and should be extrapolated to the physiological state of the end user

    The histone chaperones Nap1 and Vps75 bind histones H3 and H4 in a tetrameric conformation

    Get PDF
    Histone chaperones physically interact with histones to direct proper assembly and disassembly of nucleosomes regulating diverse nuclear processes such as DNA replication, promoter remodeling, transcription elongation, DNA damage, and histone variant exchange. Currently, the best-characterized chaperone-histone interaction is that between the ubiquitous chaperone Asf1 and a dimer of H3 and H4. Nucleosome assembly proteins (Nap proteins) represent a distinct class of histone chaperone. Using pulsed electron double resonance (PELDOR) measurements and protein crosslinking, we show that two members of this class, Nap1 and Vps75, bind histones in the tetrameric conformation also observed when they are sequestered within the nucleosome. Furthermore, H3 and H4 trapped in their tetrameric state can be used as substrates in nucleosome assembly and chaperone-mediated lysine acetylation. This alternate mode of histone interaction provides a potential means of maintaining the integrity of the histone tetramer during cycles of nucleosome reassembly
    • …
    corecore