10,692 research outputs found

    Primordial Nucleosynthesis and the Abundances of Beryllium and Boron

    Full text link
    The ability to now make measurements of Be and B as well as put constraints on \lisix\ abundances in metal-poor stars has led to a detailed reexamination of Big Bang Nucleosynthesis in the A\groughly6 regime. The nuclear reaction network has been significantly expanded with many new rates added. It is demonstrated that although a number of A>7A>7 reaction rates are poorly determined, even with extreme values chosen, the standard homogeneous model is unable to produce significant yields (Be/H and B/H <10−17<10^{-17} when A≤7A\le7 abundances fit) above A=7A=7 and the \liseven/\lisix\ ratio always exceeds 500. We also preliminarily explore inhomogeneous models, such as those inspired by a first order quark-hadron phase transition, where regions with high neutron/proton ratios can allow some leakage up to A>7A>7. However models that fit the A≤7A\le7 abundances still seem to have difficulty in obtaining significant A>7A>7 yields.Comment: Plain TeX, 28 pages, 8 figures (not included, but available from authors). UMN-TH-1020/9

    Large Scale Baryon Isocurvature Inhomogeneities

    Get PDF
    Big bang nucleosynthesis constraints on baryon isocurvature perturbations are determined. A simple model ignoring the effects of the scale of the perturbations is first reviewed. This model is then extended to test the claim that large amplitude perturbations will collapse, forming compact objects and preventing their baryons from contributing to the observed baryon density. It is found that baryon isocurvature perturbations are constrained to provide only a slight increase in the density of baryons in the universe over the standard homogeneous model. In particular it is found that models which rely on power laws and the random phase approximation for the power spectrum are incompatible with big bang nucleosynthesis unless an {\em ad hoc}, small scale cutoff is included.Comment: 11pages + 8figures, LaTeX (2.09), postscript figures available via anonymous ftp from oddjob.uchicago.edu:/ftp/ibbn/fig?.ps where ?=1-8 or via email from [email protected], Fermilab-Pub-94/???-A and UMN-TH-1307/9

    Modularity and 4D-2D spectral equivalences for large-N gauge theories with adjoint matter

    Get PDF
    In recent work, we demonstrated that the confined-phase spectrum of non-supersymmetric pure Yang-Mills theory coincides with the spectrum of the chiral sector of a two-dimensional conformal field theory in the large-NN limit. This was done within the tractable setting in which the gauge theory is compactified on a three-sphere whose radius is small compared to the strong length scale. In this paper, we generalize these observations by demonstrating that similar results continue to hold even when massless adjoint matter fields are introduced. These results hold for both thermal and (−1)F(-1)^F-twisted partition functions, and collectively suggest that the spectra of large-NN confining gauge theories are organized by the symmetries of two-dimensional conformal field theories.Comment: 51 pages, LaTeX, 3 figure

    Microwave Dielectric Heating of Drops in Microfluidic Devices

    Get PDF
    We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has a large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picoliter drop of water and this enables very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperatures as large as 30 degrees C above the base temperature of the microfluidic device. Many common biological and chemical applications require rapid and local control of temperature, such as PCR amplification of DNA, and can benefit from this new technique.Comment: 6 pages, 4 figure
    • …
    corecore