27 research outputs found

    Oxidative elemental cycling under the low O<sub>2</sub> Eoarchean atmosphere

    Get PDF
    The Great Oxidation Event signals the first large-scale oxygenation of the atmosphere roughly 2.4 Gyr ago. Geochemical signals diagnostic of oxidative weathering, however, extend as far back as 3.3–2.9 Gyr ago. 3.8–3.7 Gyr old rocks from Isua, Greenland stand as a deep time outpost, recording information on Earth’s earliest surface chemistry and the low oxygen primordial biosphere. Here we find fractionated Cr isotopes, relative to the igneous silicate Earth reservoir, in metamorphosed banded iron formations (BIFs) from Isua that indicate oxidative Cr cycling 3.8–3.7 Gyr ago. Elevated U/Th ratios in these BIFs relative to the contemporary crust, also signal oxidative mobilization of U. We suggest that reactive oxygen species were present in the Eoarchean surface environment, under a very low oxygen atmosphere, inducing oxidative elemental cycling during the deposition of the Isua BIFs and possibly supporting early aerobic biology

    Mixing and its effects on biogeochemistry in the persistently stratified, deep, tropical Lake Matano, Indonesia

    Get PDF
    This is the publisher's version, also available electronically from http://www.aslo.orgIn the > 590-m deep, tropical Lake Matano (Indonesia), stratification is characterized by weak thermal gradients (< 2°C per 500 m) and weak salinity gradients (< 0.14% per 500 m). These gradients persist over seasons, decades, and possibly centuries. Under these nearly steady-state conditions, vertical eddy diffusion coefficients (Kz) cannot be estimated by conventional methods that rely on time derivatives of temperature distributions. We use and compare several alternative methods: one-dimensional k-ε modeling, three-dimensional hydrodynamic modeling, correlation with the size of Thorpe instabilities, and correlation with the stability frequency. In the thermocline region, at 100-m depth, the Kz is ~ 5 × 10-6 m2 s-1, but, below 300 m, the small density gradient results in large (20 m) vertical eddies and high mixing rates (Kz ~ 10-2 m2 s-1). The estimated timescale of water renewal in the monimolimnion is several hundred years. Intense evaporation depletes the surface mixed layer of 16O and 1H isotopes, making it isotopically heavier. The lake waters become progressively isotopically lighter with depth, and the isotopic composition in the deep waters is close to those of the ground and tributary waters. The vertical distribution of Kz is used in a biogeochemical reaction-transport model. We show that, outside of a narrow thermocline region, the vertical distributions of dissolved oxygen, iron, methane, and phosphorus are shaped by vertical variations in transport rates, rather than by sources or sinks

    The biogeochemistry of tropical lakes: A case study from Lake Matano, Indonesia

    Get PDF
    This is the publisher's version, also available electronically from http://onlinelibrary.wiley.comWe examined the chemical composition of the water column of Lake Matano, Sulawesi Island, Indonesia, to document how the high abundances of Fe (hydr)oxides in tropical soils and minimal seasonal temperature variability affect biogeochemical cycling in lakes. Lake Matano exhibits weak thermal stratification, yet a persistent pycnocline separates an oxic epilimnion from anoxic meta- and hypolimnions. The concentration of soluble P in the epilimnetic waters is very low and can be attributed to scavenging by Fe (hydr)oxides. Chromium concentrations in the epilimnion are high (up to 180 nmol L−1), but below U.S. Environmental Protection Agency guidelines for aquatic ecosystems. The concentration of chromium decreases sharply across the oxic-anoxic boundary, revealing that the hypolimnion is a sink for Cr. Flux calculations using a one-dimensional transportreaction model for the water column fail to satisfy mass balance requirements and indicate that sediment transport and diagenesis play an important role in the exchange of Fe, Mn, P, and Cr between the epilimnion and hypolimnion. Exchange of water between the epilimnion and hypolimnion is slow and on a time scale similar to temperate meromictic lakes. This limits recycling of P and N to the epilimnion and removal of Cr to the hypolimnion, both of which likely restrict primary production in the epilimnion. Owing to the slow exchange, steep concentration gradients in Fe and Mn species develop in the metalimnion. These concentration gradients are conducive to the proliferation of chemoautotrophic and anoxygenic phototrophic microbial communities, which may contribute a significant fraction to the total primary production in the lake

    Biogeochemistry of manganese in ferruginous Lake Matano, Indonesia

    Get PDF
    This study explores Mn biogeochemistry in a stratified, ferruginous lake, a modern analogue to ferruginous oceans. Intense Mn cycling occurs in the chemocline where Mn is recycled at least 15 times before sedimentation. The product of biologically catalyzed Mn oxidation in Lake Matano is birnessite. Although there is evidence for abiotic Mn reduction with Fe(II), Mn reduction likely occurs through a variety of pathways. The flux of Fe(II) is insufficient to balance the reduction of Mn at 125 m depth in the water column, and Mn reduction could be a significant contributor to CH&lt;sub&gt;4&lt;/sub&gt; oxidation. By combining results from synchrotron-based X-ray fluorescence and X-ray spectroscopy, extractions of sinking particles, and reaction transport modeling, we find the kinetics of Mn reduction in the lake's reducing waters are sufficiently rapid to preclude the deposition of Mn oxides from the water column to the sediments underlying ferruginous water. This has strong implications for the interpretation of the sedimentary Mn record

    Phylogenetic and structural diversity of aromatically dense pili from environmental metagenomes

    Get PDF
    This is the peer reviewed version of the following article: Bray, M.S., Wu, J., Padilla, C.C., Stewart, F.J., Fowle, D.A., Henny, C., Simister, R.L., Thompson, K.J., Crowe, S.A. and Glass, J.B. (2020), Phylogenetic and structural diversity of aromatically dense pili from environmental metagenomes. Environmental Microbiology Reports, 12: 49-57. https://doi.org/10.1111/1758-2229.12809, which has been published in final form at https://doi.org/10.1111/1758-2229.12809. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. This article may not be enhanced, enriched or otherwise transformed into a derivative work, without express permission from Wiley or by statutory rights under applicable legislation. Copyright notices must not be removed, obscured or modified. The article must be linked to Wiley’s version of record on Wiley Online Library and any embedding, framing or otherwise making available the article or pages thereof by third parties from platforms, services and websites other than Wiley Online Library must be prohibited.Electroactive type IV pili, or e-pili, are used by some microbial species for extracellular electron transfer. Recent studies suggest that e-pili may be more phylogenetically and structurally diverse than previously assumed. Here, we used updated aromatic density thresholds (≥9.8% aromatic amino acids, ≤22-aa aromatic gaps and aromatic amino acids at residues 1, 24, 27, 50 and/or 51, and 32 and/or 57) to search for putative e-pilin genes in metagenomes from diverse ecosystems with active microbial metal cycling. Environmental putative e-pilins were diverse in length and phylogeny, and included truncated e-pilins in Geobacter spp., as well as longer putative e-pilins in Fe(II)-oxidizing Betaproteobacteria and Zetaproteobacteria

    Sulfate was a trace constituent of Archean seawater

    Get PDF
    In the low-oxygen Archean world (>2400 million years ago), seawater sulfate concentrations were much lower than today, yet open questions frustrate the translation of modern measurements of sulfur isotope fractionations into estimates of Archean seawater sulfate concentrations. In the water column of Lake Matano, Indonesia, a low-sulfate analog for the Archean ocean, we find large (>20 per mil) sulfur isotope fractionations between sulfate and sulfide, but the underlying sediment sulfides preserve a muted range of δ^(34)S values. Using models informed by sulfur cycling in Lake Matano, we infer Archean seawater sulfate concentrations of less than 2.5 micromolar. At these low concentrations, marine sulfate residence times were likely 10^3 to 10^4 years, and sulfate scarcity would have shaped early global biogeochemical cycles, possibly restricting biological productivity in Archean oceans

    Introduction to Geomicrobiology

    No full text

    Experimental Study of Uranyl Adsorption onto Bacillus subtilis

    No full text
    corecore