1,741 research outputs found
Magnetic field effects in few-level quantum dots: theory, and application to experiment
We examine several effects of an applied magnetic field on Anderson-type
models for both single- and two-level quantum dots, and make direct comparison
between numerical renormalization group (NRG) calculations and recent
conductance measurements. On the theoretical side the focus is on
magnetization, single-particle dynamics and zero-bias conductance, with
emphasis on the universality arising in strongly correlated regimes; including
a method to obtain the scaling behavior of field-induced Kondo resonance shifts
over a very wide field range. NRG is also used to interpret recent experiments
on spin-1/2 and spin-1 quantum dots in a magnetic field, which we argue do not
wholly probe universal regimes of behavior; and the calculations are shown to
yield good qualitative agreement with essentially all features seen in
experiment. The results capture in particular the observed field-dependence of
the Kondo conductance peak in a spin-1/2 dot, with quantitative deviations from
experiment occurring at fields in excess of 5 T, indicating the eventual
inadequacy of using the equilibrium single-particle spectrum to calculate the
conductance at finite bias.Comment: 15 pages, 12 figures. Version as published in PR
Validation of CTmax Protocols Using Cased and Uncased \u3ci\u3ePycnopsyche Guttifer\u3c/i\u3e (Trichoptera: Limnephilidae) Larvae
The critical thermal maximum (CTmax) of a northern Lower Michigan population of Pycnopsyche guttifer was determined using four rates of temperature increase (0.10, 0.33, 0.50, and 0.70oC per minute), and two case states (intact and removed). Across all temperature increase rates, larvae removed from their cases had a significantly lower mean CTmax than those remaining in their cases, suggesting that the case can increase the larva’s ability to tolerate thermal stress, possibly due to respiratory advantages. Regardless of case state, mean CTmax was significantly lower at the 0.10oC per minute increase rate than the other three rates, likely due to increased exposure time. Our results indicate that CTmax studies done using 0.33–0.70oC per minute increase protocols would be comparable with each other, but not with studies using an increase rate of 0.10oC per minute
Correlated electron physics in multilevel quantum dots: phase transitions, transport, and experiment
We study correlated two-level quantum dots, coupled in effective 1-channel
fashion to metallic leads; with electron interactions including on-level and
inter-level Coulomb repulsions, as well as the inter-orbital Hund's rule
exchange favoring the spin-1 state in the relevant sector of the free dot. For
arbitrary dot occupancy, the underlying phases, quantum phase transitions
(QPTs), thermodynamics, single-particle dynamics and electronic transport
properties are considered; and direct comparison is made to conductance
experiments on lateral quantum dots. Two distinct phases arise generically, one
characterised by a normal Fermi liquid fixed point (FP), the other by an
underscreened (USC) spin-1 FP. Associated QPTs, which occur in general in a
mixed valent regime of non-integral dot charge, are found to consist of
continuous lines of Kosterlitz-Thouless transitions, separated by first order
level-crossing transitions at high symmetry points. A `Friedel-Luttinger sum
rule' is derived and, together with a deduced generalization of Luttinger's
theorem to the USC phase (a singular Fermi liquid), is used to obtain a general
result for the T=0 zero-bias conductance, expressed solely in terms of the dot
occupancy and applicable to both phases. Relatedly, dynamical signatures of the
QPT show two broad classes of behavior, corresponding to the collapse of either
a Kondo resonance, or antiresonance, as the transition is approached from the
Fermi liquid phase; the latter behavior being apparent in experimental
differential conductance maps. The problem is studied using the numerical
renormalization group method, combined with analytical arguments.Comment: 22 pages, 18 figures, submitted for publicatio
Vocational training and knowledge development:a deeper understanding
Construction management research literature has identified the importance of understanding the practical realities of skills and training provision and the role of reflective practice in the development of knowledge. This paper examines vocational training of experienced site staff in the development of their knowledge through SVQ training to investigate the primary factors for successful learning in site-based construction staff with a supervisory/management role. Using semi-structured interviews the impact of vocational training on individual candidates and other sitebased staff are investigated. The paper explores, through the reflections of 26 SVQ candidates (20 SVQ3 and 6 SVQ4), a deeper understanding of how site supervisors and site managers learn through the SVQ process and develop tacit knowledge through formal reflection. Reflective practice develops practical wisdom (Phronesis). The investigation explains aspects of practical wisdom and how knowledge, practice and skills are developed through vocational training. There is a clear perception by those completing the qualification that it has enabled them to perform their job better identifying numerous examples relating to problem solving, critical thinking, making decisions and leadership. It has been found that Phronesis is evident on a day-to-day basis on site activities developed through reflective practice in personal development. The reflective practice in developing knowledge also builds, within individuals, a better understanding of themselves and their capabilities through the learning achieved in the SVQ. Future work is identified around analysing the role of the assessor in facilitating Phronesis in the SVQ context
Single-particle dynamics of the Anderson model: a local moment approach
A non-perturbative local moment approach to single-particle dynamics of the
general asymmetric Anderson impurity model is developed. The approach
encompasses all energy scales and interaction strengths. It captures thereby
strong coupling Kondo behaviour, including the resultant universal scaling
behaviour of the single-particle spectrum; as well as the mixed valent and
essentially perturbative empty orbital regimes. The underlying approach is
physically transparent and innately simple, and as such is capable of practical
extension to lattice-based models within the framework of dynamical mean-field
theory.Comment: 26 pages, 9 figure
Validation of CTmax Protocols Using Cased and Uncased \u3ci\u3ePycnopsyche Guttifer\u3c/i\u3e (Trichoptera: Limnephilidae) Larvae
The critical thermal maximum (CTmax) of a northern Lower Michigan population of Pycnopsyche guttifer was determined using four rates of temperature increase (0.10, 0.33, 0.50, and 0.70oC per minute), and two case states (intact and removed). Across all temperature increase rates, larvae removed from their cases had a significantly lower mean CTmax than those remaining in their cases, suggesting that the case can increase the larva’s ability to tolerate thermal stress, possibly due to respiratory advantages. Regardless of case state, mean CTmax was significantly lower at the 0.10oC per minute increase rate than the other three rates, likely due to increased exposure time. Our results indicate that CTmax studies done using 0.33–0.70oC per minute increase protocols would be comparable with each other, but not with studies using an increase rate of 0.10oC per minute
UNLV New Horizons Band & UNLV Community Concert Band
Program listing performers and works performed
- …