3,457 research outputs found

    Crowdsourcing for Participatory Democracies: Efficient Elicitation of Social Choice Functions

    Full text link
    We present theoretical and empirical results demonstrating the usefulness of voting rules for participatory democracies. We first give algorithms which efficiently elicit \epsilon-approximations to two prominent voting rules: the Borda rule and the Condorcet winner. This result circumvents previous prohibitive lower bounds and is surprisingly strong: even if the number of ideas is as large as the number of participants, each participant will only have to make a logarithmic number of comparisons, an exponential improvement over the linear number of comparisons previously needed. We demonstrate the approach in an experiment in Finland's recent off-road traffic law reform, observing that the total number of comparisons needed to achieve a fixed \epsilon approximation is linear in the number of ideas and that the constant is not large. Finally, we note a few other experimental observations which support the use of voting rules for aggregation. First, we observe that rating, one of the common alternatives to ranking, manifested effects of bias in our data. Second, we show that very few of the topics lacked a Condorcet winner, one of the prominent negative results in voting. Finally, we show data hinting at a potential future direction: the use of partial rankings as opposed to pairwise comparisons to further decrease the elicitation time

    Optimal Decompositions of Barely Separable States

    Get PDF
    Two families of bipartite mixed quantum states are studied for which it is proved that the number of members in the optimal-decomposition ensemble --- the ensemble realizing the entanglement of formation --- is greater than the rank of the mixed state. We find examples for which the number of states in this optimal ensemble can be larger than the rank by an arbitrarily large factor. In one case the proof relies on the fact that the partial transpose of the mixed state has zero eigenvalues; in the other case the result arises from the properties of product bases that are completable only by embedding in a larger Hilbert space.Comment: 14 Pages (RevTeX), 1 figure (eps). Submitted to the special issue of the J. Mod. Opt. V2: Change in terminology from "ensemble length" to "ensemble cardinality

    Reputation and Competence in Publicly Funded Science: Estimating the Effects on Research Group Productivity..

    Get PDF
    This paper estimates the "production function" for scientific research publications in the field of biotechnology. It utilizes an exceptionally rich and comprehensive data set pertaining to the universe of research groups that applied to a 1989-1993 research program in biotechnology and bio-instrumentation, sponsored by the Italian National research Council, CNR. A structural model of the resource allocation process in scientific research guides the selection of instruments in the econometric analysis, and controls for selectivity bias effects on estimates based on the performance of funded research units. The average elasticity of research output with respect to the research budget is estimated to be 0.6; but, for a small fraction of groups led by highly prestigious PIs this elasticity approaches 1. These estimates imply, conditional on the distribution of observed productivity, that a more unequal distribution of research funds would increase research output in the short-run. Past research publication performance is found to have an important effect on expect levels of grant funding, and hence on the unit's current productivity in terms of (quality adjusted) publications. The results show that the productivity of aggregate resource expenditures supporting scientific research is critically dependent on the institutional mechanisms and criteria employed in the allocation of such resources.

    Laboratory experiments on cohesive soil bed fluidization by water waves

    Get PDF
    Part I. Relationships between the rate of bed fluidization and the rate of wave energy dissipation, by Jingzhi Feng and Ashish J. Mehta and Part II. In-situ rheometry for determining the dynamic response of bed, by David J.A. Williams and P. Rhodri Williams. A series of preliminary laboratory flume experiments were carried out to examine the time-dependent behavior of a cohesive soil bed subjected to progressive, monochromatic waves. The bed was an aqueous, 50/50 (by weight) mixture of a kaolinite and an attapulgite placed in a plexiglass trench. The nominal bed thickness was 16 cm with density ranging from 1170 to 1380 kg/m 3, and water above was 16 to 20 cm deep. Waves of design height ranging from 2 to 8 cm and a nominal frequency of 1 Hz were run for durations up to 2970 min. Part I of this report describes experiments meant to examine the rate at which the bed became fluidized, and its relation to the rate of wave energy dissipation. Part II gives results on in-situ rheometry used to track the associated changes in bed rigidity. Temporal and spatial changes of the effective stress were measured during the course of wave action, and from these changes the bed fluidization rate was calculated. A wave-mud interaction model developed in a companion study was employed to calculate the rate of wave energy dissipation. The dependence of the rate of fluidization on the rate of energy dissipation was then explored. Fluidization, which seemingly proceeded down from the bed surface, occurred as a result of the loss of structural integrity of the soil matrix through a buildup of the excess pore pressure and the associated loss of effective stress. The rate of fluidization was typically greater at the beginning of wave action and apparently approached zero with time. This trend coincided with the approach of the rate of energy dissipation to a constant value. In general it was also observed that, for a given wave frequency, the larger the wave height the faster the rate of fluidization and thicker the fluid mud layer formed. On the other hand, increasing the time of bed consolidation prior to wave action decreased the fluidization rate due to greater bed rigidity. Upon cessation of wave action structural recovery followed. Dynamic rigidity was measured by specially designed, in situ shearometers placed in the bed at appropriate elevations to determine the time-dependence of the storage and loss moduli, G' and G", of the viscoelastic clay mixture under 1 Hz waves. As the inter-particle bonds of the space-filling, bed material matrix weakened, the shear propagation velocity decreased measurably. Consequently, G' decreased and G" increased as a transition from dynamically more elastic to more viscous response occurred. These preliminary experiments have demonstrated the validity of the particular rheometric technique used, and the critical need for synchronous, in-situ measurements of pore pressures and moduli characterizing bed rheology in studies on mud fluidization. This study was supported by WES contract DACW39-90-K-0010. (This document contains 151 pages.

    Damage to Mitochondrial Complex I During Cardiac Ischemia Reperfusion Injury is Reduced Indirectly by Anti-anginal Drug Ranolazine

    Get PDF
    Ranolazine, an anti-anginal drug, is a late Na+ channel current blocker that is also believed to attenuate fatty acid oxidation and mitochondrial respiratory complex I activity, especially during ischemia. In this study, we investigated if ranolazine\u27s protective effect against cardiac ischemia/reperfusion (IR) injury is mediated at the mitochondrial level and specifically if respiratory complex I (NADH Ubiquinone oxidoreductase) function is protected. We treated isolated and perfused guinea pig hearts with ranolazine just before 30 min ischemia and then isolated cardiac mitochondria at the end of 30 min ischemia and/or 30 min ischemia followed by 10 min reperfusion. We utilized spectrophotometric and histochemical techniques to assay complex I activity, Western blot analysis for complex I subunit NDUFA9, electron paramagnetic resonance for activity of complex I Fe–S clusters, enzyme linked immuno sorbent assay (ELISA) for determination of protein acetylation, native gel histochemical staining for respiratory supercomplex assemblies, and high pressure liquid chromatography for cardiolipin integrity; cardiac function was measured during IR. Ranolazine treated hearts showed higher complex I activity and greater detectable complex I protein levels compared to untreated IR hearts. Ranolazine treatment also led to more normalized electron transfer via Fe–S centers, supercomplex assembly and cardiolipin integrity. These improvements in complex I structure and function with ranolazine were associated with improved cardiac function after IR. However, these protective effects of ranolazine are not mediated by a direct action on mitochondria, but rather indirectly via cytosolic mechanisms that lead to less oxidation and better structural integrity of complex I

    Liquidity in Credit Networks with Constrained Agents

    Full text link
    In order to scale transaction rates for deployment across the global web, many cryptocurrencies have deployed so-called "Layer-2" networks of private payment channels. An idealized payment network behaves like a Credit Network, a model for transactions across a network of bilateral trust relationships. Credit Networks capture many aspects of traditional currencies as well as new virtual currencies and payment mechanisms. In the traditional credit network model, if an agent defaults, every other node that trusted it is vulnerable to loss. In a cryptocurrency context, trust is manufactured by capital deposits, and thus there arises a natural tradeoff between network liquidity (i.e. the fraction of transactions that succeed) and the cost of capital deposits. In this paper, we introduce constraints that bound the total amount of loss that the rest of the network can suffer if an agent (or a set of agents) were to default - equivalently, how the network changes if agents can support limited solvency guarantees. We show that these constraints preserve the analytical structure of a credit network. Furthermore, we show that aggregate borrowing constraints greatly simplify the network structure and in the payment network context achieve the optimal tradeoff between liquidity and amount of escrowed capital.Comment: To be published in TheWebConf 202

    Axillary Brachial Plexus Block

    Get PDF
    The axillary approach to brachial plexus blockade provides satisfactory anaesthesia for elbow, forearm, and hand surgery and also provides reliable cutaneous anaesthesia of the inner upper arm including the medial cutaneous nerve of arm and intercostobrachial nerve, areas often missed with other approaches. In addition, the axillary approach remains the safest of the four main options, as it does not risk blockade of the phrenic nerve, nor does it have the potential to cause pneumothorax, making it an ideal option for day case surgery. Historically, single-injection techniques have not provided reliable blockade in the musculocutaneous and radial nerve territories, but success rates have greatly improved with multiple-injection techniques whether using nerve stimulation or ultrasound guidance. Complete, reliable, rapid, and safe blockade of the arm is now achievable, and the paper summarizes the current position with particular reference to ultrasound guidance

    Lean Middleware

    Get PDF
    This paper describes an approach to achieving data integration across multiple sources in an enterprise, in a manner that is cost efficient and economically scalable. We present an approach that does not rely on major investment in structured, heavy-weight database systems for data storage or heavy-weight middleware responsible for integrated access. The approach is centered around pushing any required data structure and semantics functionality (schema) to application clients, as well as pushing integration specification and functionality to clients where integration can be performed on-the-fly
    corecore