3,693,483 research outputs found

    Distribution of interstitial stem cells in Hydra

    Get PDF
    The distribution of interstitial stem cells along the Hydra body column was determined using a simplified cloning assay. The assay measures stem cells as clone-forming units (CFU) in aggregates of nitrogen mustard inactivated Hydra tissue. The concentration of stem cells in the gastric region was uniform at about 0.02 CFU/epithelial cell. In both the hypostome and basal disk the concentration was 20-fold lower. A decrease in the ratio of stem cells to committed nerve and nematocyte precursors was correlated with the decrease in stem cell concentration in both hypostome and basal disk. The ratio of stem cells to committed precursors is a sensitive indicator of the rate of self-renewal in the stem cell population. From the ratio it can be estimated that <10% of stem cells self-renew in the hypostome and basal disk compared to 60% in the gastric region. Thus, the results provide an explanation for the observed depletion of stem cells in these regions. The results also suggest that differentiation and self-renewal compete for the same stem cell population

    Memory effects can make the transmission capability of a communication channel uncomputable

    Full text link
    Most communication channels are subjected to noise. One of the goals of Information Theory is to add redundancy in the transmission of information so that the information is transmitted reliably and the amount of information transmitted through the channel is as large as possible. The maximum rate at which reliable transmission is possible is called the capacity. If the channel does not keep memory of its past, the capacity is given by a simple optimization problem and can be efficiently computed. The situation of channels with memory is less clear. Here we show that for channels with memory the capacity cannot be computed to within precision 1/5. Our result holds even if we consider one of the simplest families of such channels -information-stable finite state machine channels-, restrict the input and output of the channel to 4 and 1 bit respectively and allow 6 bits of memory.Comment: Improved presentation and clarified claim

    Upper and lower bounds on resonances for manifolds hyperbolic near infinity

    Full text link
    For a conformally compact manifold that is hyperbolic near infinity and of dimension n+1n+1, we complete the proof of the optimal O(rn+1)O(r^{n+1}) upper bound on the resonance counting function, correcting a mistake in the existing literature. In the case of a compactly supported perturbation of a hyperbolic manifold, we establish a Poisson formula expressing the regularized wave trace as a sum over scattering resonances. This leads to an rn+1r^{n+1} lower bound on the counting function for scattering poles.Comment: 29 pages, minor corrections, added one figur

    Stable Leader Election in Population Protocols Requires Linear Time

    Full text link
    A population protocol *stably elects a leader* if, for all nn, starting from an initial configuration with nn agents each in an identical state, with probability 1 it reaches a configuration y\mathbf{y} that is correct (exactly one agent is in a special leader state \ell) and stable (every configuration reachable from y\mathbf{y} also has a single agent in state \ell). We show that any population protocol that stably elects a leader requires Ω(n)\Omega(n) expected "parallel time" --- Ω(n2)\Omega(n^2) expected total pairwise interactions --- to reach such a stable configuration. Our result also informs the understanding of the time complexity of chemical self-organization by showing an essential difficulty in generating exact quantities of molecular species quickly.Comment: accepted to Distributed Computing special issue of invited papers from DISC 2015; significantly revised proof structure and intuitive explanation

    Optical control of excited-state lifetimes

    Get PDF
    Electronic excitation of particles in fluorescent materials can now be controlled using laser-assisted energy-transfer techniques

    Parallel integer relation detection: techniques and applications

    Get PDF
    For guidance on citations see FAQs. c ○ [not recorded] Version: [not recorded] Link(s) to article on publisher’s website
    corecore