8 research outputs found

    Comparison between the numerical solutions and the Thomas-Fermi approximation for atomic-molecular Bose-Einstein condensates

    Full text link
    We study the stationary solution of an atomic Bose-Einstein condensate coupled coherently to a molecular condensate with both repulsive and attractive interspecies interactions confined in an isotropic harmonic trap. We use the Thomas-Fermi approximation and find four kinds of analytical solution for the cases. These analytical solutions are adopted as trial function for the diffusive numerical solution of the Gross-Pitaevskii equations. For the repulsive interspecies interaction, the case in which the atomic and molecular wavefunctions are out-phase, the densities have similar profiles for both methods, however, the case where the wavefunctions are in-phase, there are considerable difference between the density profiles. For the attractive interspecies interaction, there are two cases in the Thomas Fermi approximation where the wavefunctions are in-phase. One of them has numerical solution that agree with the approximation and the other does not have corresponding numerical solution.Comment: 15 pages, 6 figure

    Black holes and thermodynamics

    No full text
    A finalidade deste trabalho é estabelecer as conexões entre física de buracos negros e termodinâmica, atentando para eventuais semelhanças e diferenças entre ramos aparentemente bem diversos da física moderna. Tais conexões foram inicialmente buscadas e estabelecidas na década de 1970, graças ao trabalho de S. Hawking e Jacob D. Bekenstein, entre outros, e sucessivamente aprofundadas nos anos subseqüentes, notadamente na última década. O mérito maior do primeiro foi estabelecer a emissão de radiação com espectro térmico por buracos negros em geral, mesmo aqueles desprovidos de rotação e carga (buracos negros de Schwarzschild). O segundo encarregou-se de correlacionar leis termodinâmicas clássicas com processos envolvendo buracos negros. Neste trabalho, procuramos inicialmente estudar os buracos negros de Schwarzschild e Kerr-Newman no tocante às suas propriedades gerais, bem como o problema do movimento de partículas nos espaços-tempos em questão, para discutir-se brevemente o problema de extração de energia de buracos negros, como apontado por Penrose e outros. Estabelecidas as propriedades gerais, pode-se enfim derivar a Termodinâmica destes buracos, correlacionando-se entropia e área, e obter expressões para a temperatura de corpo negro dos mesmos - em perfeita consonância com a derivação de Hawking, não abordada aqui, feita através da Teoria Quântica de Campos. Com a temperatura, pode-se estudar as capacidades térmicas, reveladores de propriedades típicas de buracos negros não compartilhadas por sistemas clássicos. A reboque destas, entra a discussão sobre a estabilidade termodinâmica de buracos negros em ensembles canônicos e microcanônicos, através do método das séries lineares, de Poincaré, fechando o presente trabalho. Assim, os capítulos 1 e 2 tratam das soluções de Schwarzschild e Kerr-Newman, respectivamente, abordando-lhes as propriedades gerais e o problema do movimento de partículas, materiais ou não, nessas geometrias. O capítulo 3 estabelece as pontes entre Termodinâmica e buracos negros, sendo crucial para o restante do trabalho. No capítulo 4 estudamos temperaturas e capacidades térmicas de diversos buracos negros, e finalmente no capítulo 5 vem o problema da estabilidade termodinâmica dos buracos negros.In the present work, we have established the connections between black-hole physics and thermodynamics, searching for similarities and differences between these two branches of physicxs, which might look quite far apart. Such links were first sought for and established during the 1970s, thanks to the pioneering work of S. Hawking and Jacob D. Bekenstein, among others, and continuously developed in the following years, notably in the last decade. Hawking's major achievement was the prediction, from arguments based on Quantum Field Theory, that black holes radiate with a thermal spectrum, even the uncharged and nonrotating ones (the Schwarzschild black holes). Bekenstein's biggest merit was to find the link between classical thermodynamical laws and processes involving black holes. In this work, we started with Schwarzschild and Kerr-Newman black holes, working out their general properties, as well as the problem of particle motion in such spacetimes, so that we could briefly discuss the issue of energy extraction from black holes, as established by Penrose and others. Once the general features of these black holes were known, it was possible to derive the black-hole thermodynamics, due to a simple relation between black-hole entropy and area. Expressions for the black-hole temperature were then easily obtained, in perfect agreement with Hawking's own derivation, not considered here. With temperatures at hand, heat capacities could be thoroughly examined, showing intrinsic properties of black holes, not shared by classical systems. The question of thermodynamic stability of black holes arose naturally from heat capacity analysis, and we have analysed black holes in both the microcanonical and canonical ensembles, in the light of Poincaré's linear series method, completing the current work. Chapters 1 and 2 deal with the Schwarzschild and Kerr-Newman solutions, respectively, deriving their general features and working out particle motion in these geometries. Chapter 3 establishes the links between black-hole physics and thermodynamics, being of crucial importance for the subsequent chapters. Chapter 4 provides an extensive study of black-hole temperatures and heat capacities, paving the way for the last chapter, Chapter 5, concerning to thermodynamic stability of black holes

    Black holes and thermodynamics

    No full text
    A finalidade deste trabalho é estabelecer as conexões entre física de buracos negros e termodinâmica, atentando para eventuais semelhanças e diferenças entre ramos aparentemente bem diversos da física moderna. Tais conexões foram inicialmente buscadas e estabelecidas na década de 1970, graças ao trabalho de S. Hawking e Jacob D. Bekenstein, entre outros, e sucessivamente aprofundadas nos anos subseqüentes, notadamente na última década. O mérito maior do primeiro foi estabelecer a emissão de radiação com espectro térmico por buracos negros em geral, mesmo aqueles desprovidos de rotação e carga (buracos negros de Schwarzschild). O segundo encarregou-se de correlacionar leis termodinâmicas clássicas com processos envolvendo buracos negros. Neste trabalho, procuramos inicialmente estudar os buracos negros de Schwarzschild e Kerr-Newman no tocante às suas propriedades gerais, bem como o problema do movimento de partículas nos espaços-tempos em questão, para discutir-se brevemente o problema de extração de energia de buracos negros, como apontado por Penrose e outros. Estabelecidas as propriedades gerais, pode-se enfim derivar a Termodinâmica destes buracos, correlacionando-se entropia e área, e obter expressões para a temperatura de corpo negro dos mesmos - em perfeita consonância com a derivação de Hawking, não abordada aqui, feita através da Teoria Quântica de Campos. Com a temperatura, pode-se estudar as capacidades térmicas, reveladores de propriedades típicas de buracos negros não compartilhadas por sistemas clássicos. A reboque destas, entra a discussão sobre a estabilidade termodinâmica de buracos negros em ensembles canônicos e microcanônicos, através do método das séries lineares, de Poincaré, fechando o presente trabalho. Assim, os capítulos 1 e 2 tratam das soluções de Schwarzschild e Kerr-Newman, respectivamente, abordando-lhes as propriedades gerais e o problema do movimento de partículas, materiais ou não, nessas geometrias. O capítulo 3 estabelece as pontes entre Termodinâmica e buracos negros, sendo crucial para o restante do trabalho. No capítulo 4 estudamos temperaturas e capacidades térmicas de diversos buracos negros, e finalmente no capítulo 5 vem o problema da estabilidade termodinâmica dos buracos negros.In the present work, we have established the connections between black-hole physics and thermodynamics, searching for similarities and differences between these two branches of physicxs, which might look quite far apart. Such links were first sought for and established during the 1970s, thanks to the pioneering work of S. Hawking and Jacob D. Bekenstein, among others, and continuously developed in the following years, notably in the last decade. Hawking's major achievement was the prediction, from arguments based on Quantum Field Theory, that black holes radiate with a thermal spectrum, even the uncharged and nonrotating ones (the Schwarzschild black holes). Bekenstein's biggest merit was to find the link between classical thermodynamical laws and processes involving black holes. In this work, we started with Schwarzschild and Kerr-Newman black holes, working out their general properties, as well as the problem of particle motion in such spacetimes, so that we could briefly discuss the issue of energy extraction from black holes, as established by Penrose and others. Once the general features of these black holes were known, it was possible to derive the black-hole thermodynamics, due to a simple relation between black-hole entropy and area. Expressions for the black-hole temperature were then easily obtained, in perfect agreement with Hawking's own derivation, not considered here. With temperatures at hand, heat capacities could be thoroughly examined, showing intrinsic properties of black holes, not shared by classical systems. The question of thermodynamic stability of black holes arose naturally from heat capacity analysis, and we have analysed black holes in both the microcanonical and canonical ensembles, in the light of Poincaré's linear series method, completing the current work. Chapters 1 and 2 deal with the Schwarzschild and Kerr-Newman solutions, respectively, deriving their general features and working out particle motion in these geometries. Chapter 3 establishes the links between black-hole physics and thermodynamics, being of crucial importance for the subsequent chapters. Chapter 4 provides an extensive study of black-hole temperatures and heat capacities, paving the way for the last chapter, Chapter 5, concerning to thermodynamic stability of black holes

    Compact Stars and Black Holes - A Comparative Study of Physical Properties and Quasi-Normal Modes

    No full text
    Este trabalho visa o estudo das perturbações de sistemas gravitacionais altamente compactos, como buracos negros e estrelas de nêutrons e de quarks. As perturbações em questão podem ser de diversas naturezas (escalar, eletromagnética ou gravitacional), sendo que detivemo-nos mais atentamente naquelas de natureza gravitacional, pois estas têm despertado mais interesse por serem astronomicamente mais fáceis de detectar. Além de estudarmos tais perturbações, procedemos a uma comparação dos resultados para buracos negros, estrelas de nêutrons e de quarks. Tal comparação justifica-se pelo fato de que a confrontação de previsões teóricas com resultados experimentais pode ajudar-nos a identificar objetos astronômicos de interesse, distingüi-los e, no caso de estrelas, aprender algo sobre sua estrutura interna, particularmente sobre a equação de estado (EDE) do fluido estelar. No que se segue, dividimos o trabalho em sete partes. Em primeiro lugar, damos uma introdução bastante sucinta ao mesmo (Capítulo 1). Depois, falamos sobre a física de estrelas de nêutrons e de quarks (Capítulo 2). A seguir, fazemos um estudo comparativo dos dois tipos de estrelas (Capítulo 3). Mais adiante, discutimos as perturbações de diversos tipos, além de definir os MQNs (Modos Quasi-Normais) de buracos negros de Schwarzschild (Capítulo 4). Prosseguimos a discussão com a métrica de Reissner-Nordström-de Sitter (Capítulo 5) e introduzimos, na seqüência, os MQNs estelares, de forma muito breve (Capítulo 6). Por fim, apresentamos nossas conclusões (Capítulo 7). A parte inédita deste trabalho está concentrada nos capítulos 5 e 6, os quatro anteriores servindo de preparativo e de base comparativa para estes dois.This work aims the detailed study of the perturbations of highly compact gravitational systems, such as black holes and both neutron and quark stars. Such perturbations may have several different characters, such as scalar and electromagnetic fields as well as gravitational (either axial or polar) disturbances. We have focused more closely on the latter kind of perturbation, since they offer better possibilities of detection in the near future, in the form of gravitational waves. Besides studying the aforementioned perturbations, we have proceeded to a comparison between black holes and neutron and quark stars , when it comes to the outcomes of the perturbations, usually called QNMs (quasi-normal modes). Such a comparison is actually in order, since a direct comparison of theoretical and observational data may help us identify astronomical objects and, in the case of compact stars, may provide valuable insights into these stars' inner structure, particularly when it comes to their equation of state (EOS). In what follows, we have subdivided this work in seven parts. We begin with a brief introduction (Chapter 1), then proceed to a description of the physics of both neutron and quark stars (Chapter 2) and, in the sequence, to a comparative study of both kinds of star (Chapter 3). Subsequently, we develop the perturbation theory of the Schwarzschild black holes, discussing their QNMs (Chapter 4) and doing the same, later, for a more general Reissner-Nordström-de Sitter geometry (chapter 5). After that, we provide a very brief introduction to the stellar MQNs (Chapter 6). Finally, we present our conclusions (Chapter 7). The chapters 5 and 6 carry the inedit part of this work, and the chapters from 1 to 4 pave the way and provide a comparative basis for them
    corecore